cgghrd.f(3) LAPACK cgghrd.f(3)[top]NAMEcgghrd.f-SYNOPSISFunctions/Subroutines subroutine cgghrd (COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q, LDQ, Z, LDZ, INFO)CGGHRDFunction/Subroutine Documentation subroutine cgghrd (characterCOMPQ, characterCOMPZ, integerN, integerILO, integerIHI, complex, dimension( lda, * )A, integerLDA, complex, dimension( ldb, * )B, integerLDB, complex, dimension( ldq, * )Q, integerLDQ, complex, dimension( ldz, * )Z, integerLDZ, integerINFO)CGGHRDPurpose:CGGHRDreduces a pair of complex matrices (A,B) to generalized upper Hessenberg form using unitary transformations, where A is a general matrix and B is upper triangular. The form of the generalized eigenvalue problem is A*x = lambda*B*x, and B is typically made upper triangular by computing its QR factorization and moving the unitary matrix Q to the left side of the equation. This subroutine simultaneously reduces A to a Hessenberg matrix H: Q**H*A*Z = H and transforms B to another upper triangular matrix T: Q**H*B*Z = T in order to reduce the problem to its standard form H*y = lambda*T*y where y = Z**H*x. The unitary matrices Q and Z are determined as products of Givens rotations. They may either be formed explicitly, or they may be postmultiplied into input matrices Q1 and Z1, so that Q1 * A * Z1**H = (Q1*Q) * H * (Z1*Z)**H Q1 * B * Z1**H = (Q1*Q) * T * (Z1*Z)**H If Q1 is the unitary matrix from the QR factorization of B in the original equation A*x = lambda*B*x, thenCGGHRDreduces the original problem to generalized Hessenberg form. Parameters: COMPQ COMPQ is CHARACTER*1 = 'N': do not compute Q; = 'I': Q is initialized to the unit matrix, and the unitary matrix Q is returned; = 'V': Q must contain a unitary matrix Q1 on entry, and the product Q1*Q is returned. COMPZ COMPZ is CHARACTER*1 = 'N': do not compute Q; = 'I': Q is initialized to the unit matrix, and the unitary matrix Q is returned; = 'V': Q must contain a unitary matrix Q1 on entry, and the product Q1*Q is returned. N N is INTEGER The order of the matrices A and B. N >= 0. ILO ILO is INTEGER IHI IHI is INTEGER ILO and IHI mark the rows and columns of A which are to be reduced. It is assumed that A is already upper triangular in rows and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally set by a previous call to CGGBAL; otherwise they should be set to 1 and N respectively. 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. A A is COMPLEX array, dimension (LDA, N) On entry, the N-by-N general matrix to be reduced. On exit, the upper triangle and the first subdiagonal of A are overwritten with the upper Hessenberg matrix H, and the rest is set to zero. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). B B is COMPLEX array, dimension (LDB, N) On entry, the N-by-N upper triangular matrix B. On exit, the upper triangular matrix T = Q**H B Z. The elements below the diagonal are set to zero. LDB LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). Q Q is COMPLEX array, dimension (LDQ, N) On entry, if COMPQ = 'V', the unitary matrix Q1, typically from the QR factorization of B. On exit, if COMPQ='I', the unitary matrix Q, and if COMPQ = 'V', the product Q1*Q. Not referenced if COMPQ='N'. LDQ LDQ is INTEGER The leading dimension of the array Q. LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise. Z Z is COMPLEX array, dimension (LDZ, N) On entry, if COMPZ = 'V', the unitary matrix Z1. On exit, if COMPZ='I', the unitary matrix Z, and if COMPZ = 'V', the product Z1*Z. Not referenced if COMPZ='N'. LDZ LDZ is INTEGER The leading dimension of the array Z. LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise. INFO INFO is INTEGER = 0: successful exit. < 0: if INFO =, the i-th argument had an illegal value. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Further Details: This routine reduces A to Hessenberg and B to triangular form by an unblocked reduction, as described in <em>Matrix_Computations</em>, by Golub and van Loan (Johns Hopkins Press). Definition at line 204 of file cgghrd.f.-iAuthorGenerated automatically by Doxygen for LAPACK from the source code.Version 3.4.2Tue Sep 25 2012 cgghrd.f(3)

List of man pages available for

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]

Polar

Member of Polar

Based on Fawad Halim's script.

....................................................................

Vote for polarhome |