cheevd.f(3) LAPACK cheevd.f(3)[top]NAMEcheevd.f-SYNOPSISFunctions/Subroutines subroutine cheevd (JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO)CHEEVDcomputes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matricesFunction/Subroutine Documentation subroutine cheevd (characterJOBZ, characterUPLO, integerN, complex, dimension( lda, * )A, integerLDA, real, dimension( * )W, complex, dimension( * )WORK, integerLWORK, real, dimension( * )RWORK, integerLRWORK, integer, dimension( * )IWORK, integerLIWORK, integerINFO)CHEEVDcomputes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices Purpose:CHEEVDcomputes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A. If eigenvectors are desired, it uses a divide and conquer algorithm. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none. Parameters: JOBZ JOBZ is CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors. UPLO UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N N is INTEGER The order of the matrix A. N >= 0. A A is COMPLEX array, dimension (LDA, N) On entry, the Hermitian matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A. On exit, if JOBZ = 'V', then if INFO = 0, A contains the orthonormal eigenvectors of the matrix A. If JOBZ = 'N', then on exit the lower triangle (if UPLO='L') or the upper triangle (if UPLO='U') of A, including the diagonal, is destroyed. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). W W is REAL array, dimension (N) If INFO = 0, the eigenvalues in ascending order. WORK WORK is COMPLEX array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK LWORK is INTEGER The length of the array WORK. If N <= 1, LWORK must be at least 1. If JOBZ = 'N' and N > 1, LWORK must be at least N + 1. If JOBZ = 'V' and N > 1, LWORK must be at least 2*N + N**2. If LWORK =, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA. RWORK RWORK is REAL array, dimension (LRWORK) On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK. LRWORK LRWORK is INTEGER The dimension of the array RWORK. If N <= 1, LRWORK must be at least 1. If JOBZ = 'N' and N > 1, LRWORK must be at least N. If JOBZ = 'V' and N > 1, LRWORK must be at least 1 + 5*N + 2*N**2. If LRWORK =-1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA. IWORK IWORK is INTEGER array, dimension (MAX(1,LIWORK)) On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. LIWORK LIWORK is INTEGER The dimension of the array IWORK. If N <= 1, LIWORK must be at least 1. If JOBZ = 'N' and N > 1, LIWORK must be at least 1. If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N. If LIWORK =-1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA. INFO INFO is INTEGER = 0: successful exit < 0: if INFO =-1, the i-th argument had an illegal value > 0: if INFO = i and JOBZ = 'N', then the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero; if INFO = i and JOBZ = 'V', then the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns INFO/(N+1) through mod(INFO,N+1). Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Further Details: Modified description of INFO. Sven, 16 Feb 05. Contributors: Jeff Rutter, Computer Science Division, University of California at Berkeley, USA Definition at line 205 of file cheevd.f.-iAuthorGenerated automatically by Doxygen for LAPACK from the source code.Version 3.4.2Tue Sep 25 2012 cheevd.f(3)

List of man pages available for

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]

Polar

Member of Polar

Based on Fawad Halim's script.

....................................................................

Vote for polarhome |