claqr0.f(3) LAPACK claqr0.f(3)[top]NAMEclaqr0.f-SYNOPSISFunctions/Subroutines subroutine claqr0 (WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ, IHIZ, Z, LDZ, WORK, LWORK, INFO)CLAQR0computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Schur decomposition.Function/Subroutine Documentation subroutine claqr0 (logicalWANTT, logicalWANTZ, integerN, integerILO, integerIHI, complex, dimension( ldh, * )H, integerLDH, complex, dimension( * )W, integerILOZ, integerIHIZ, complex, dimension( ldz, * )Z, integerLDZ, complex, dimension( * )WORK, integerLWORK, integerINFO)CLAQR0computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Schur decomposition. Purpose:CLAQR0computes the eigenvalues of a Hessenberg matrix H and, optionally, the matrices T and Z from the Schur decomposition H = Z T Z**H, where T is an upper triangular matrix (the Schur form), and Z is the unitary matrix of Schur vectors. Optionally Z may be postmultiplied into an input unitary matrix Q so that this routine can give the Schur factorization of a matrix A which has been reduced to the Hessenberg form H by the unitary matrix Q: A = Q*H*Q**H = (QZ)*H*(QZ)**H. Parameters: WANTT WANTT is LOGICAL = .TRUE. : the full Schur form T is required; = .FALSE.: only eigenvalues are required. WANTZ WANTZ is LOGICAL = .TRUE. : the matrix of Schur vectors Z is required; = .FALSE.: Schur vectors are not required. N N is INTEGER The order of the matrix H. N .GE. 0. ILO ILO is INTEGER IHI IHI is INTEGER It is assumed that H is already upper triangular in rows and columns 1:ILO-1 and IHI+1:N and, if ILO.GT.1, H(ILO,ILO-1) is zero. ILO and IHI are normally set by a previous call to CGEBAL, and then passed to CGEHRD when the matrix output by CGEBAL is reduced to Hessenberg form. Otherwise, ILO and IHI should be set to 1 and N, respectively. If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N. If N = 0, then ILO = 1 and IHI = 0. H H is COMPLEX array, dimension (LDH,N) On entry, the upper Hessenberg matrix H. On exit, if INFO = 0 and WANTT is .TRUE., then H contains the upper triangular matrix T from the Schur decomposition (the Schur form). If INFO = 0 and WANT is .FALSE., then the contents of H are unspecified on exit. (The output value of H when INFO.GT.0 is given under the description of INFO below.) This subroutine may explicitly set H(i,j) = 0 for i.GT.j and j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N. LDH LDH is INTEGER The leading dimension of the array H. LDH .GE. max(1,N). W W is COMPLEX array, dimension (N) The computed eigenvalues of H(ILO:IHI,ILO:IHI) are stored in W(ILO:IHI). If WANTT is .TRUE., then the eigenvalues are stored in the same order as on the diagonal of the Schur form returned in H, with W(i) = H(i,i). ILOZ ILOZ is INTEGER IHIZ IHIZ is INTEGER Specify the rows of Z to which transformations must be applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. ILO; IHI .LE. IHIZ .LE. N. Z Z is COMPLEX array, dimension (LDZ,IHI) If WANTZ is .FALSE., then Z is not referenced. If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the orthogonal Schur factor of H(ILO:IHI,ILO:IHI). (The output value of Z when INFO.GT.0 is given under the description of INFO below.) LDZ LDZ is INTEGER The leading dimension of the array Z. if WANTZ is .TRUE. then LDZ.GE.MAX(1,IHIZ). Otherwize, LDZ.GE.1. WORK WORK is COMPLEX array, dimension LWORK On exit, if LWORK =, WORK(1) returns an estimate of the optimal value for LWORK. LWORK LWORK is INTEGER The dimension of the array WORK. LWORK .GE. max(1,N) is sufficient, but LWORK typically as large as 6*N may be required for optimal performance. A workspace query to determine the optimal workspace size is recommended. If LWORK =-1, then-1CLAQR0does a workspace query. In this case,CLAQR0checks the input parameters and estimates the optimal workspace size for the given values of N, ILO and IHI. The estimate is returned in WORK(1). No error message related to LWORK is issued by XERBLA. Neither H nor Z are accessed. INFO INFO is INTEGER = 0: successful exit .GT. 0: if INFO = i,CLAQR0failed to compute all of the eigenvalues. Elements 1:ilo-1 and i+1:n of WR and WI contain those eigenvalues which have been successfully computed. (Failures are rare.) If INFO .GT. 0 and WANT is .FALSE., then on exit, the remaining unconverged eigenvalues are the eigen- values of the upper Hessenberg matrix rows and columns ILO through INFO of the final, output value of H. If INFO .GT. 0 and WANTT is .TRUE., then on exit (*) (initial value of H)*U = U*(final value of H) where U is a unitary matrix. The final value of H is upper Hessenberg and triangular in rows and columns INFO+1 through IHI. If INFO .GT. 0 and WANTZ is .TRUE., then on exit (final value of Z(ILO:IHI,ILOZ:IHIZ) = (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U where U is the unitary matrix in (*) (regard- less of the value of WANTT.) If INFO .GT. 0 and WANTZ is .FALSE., then Z is not accessed. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: September 2012 Contributors: Karen Braman and Ralph Byers, Department of Mathematics, University of Kansas, USA References: K. Braman, R. Byers and R. Mathias, The Multi-Shift QR Algorithm Part I: Maintaining Well Focused Shifts, and Level 3 Performance, SIAM Journal of Matrix Analysis, volume 23, pages 929--947, 2002. K. Braman, R. Byers and R. Mathias, The Multi-Shift QR Algorithm Part II: Aggressive Early Deflation, SIAM Journal of Matrix Analysis, volume 23, pages 948--973, 2002. Definition at line 240 of file claqr0.f.AuthorGenerated automatically by Doxygen for LAPACK from the source code.Version 3.4.2Tue Sep 25 2012 claqr0.f(3)

List of man pages available for

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]

Polar

Member of Polar

Based on Fawad Halim's script.

....................................................................

Vote for polarhome |