ctprfb.f(3) LAPACK ctprfb.f(3)[top]NAMEctprfb.f-SYNOPSISFunctions/Subroutines subroutine ctprfb (SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V, LDV, T, LDT, A, LDA, B, LDB, WORK, LDWORK)CTPRFBapplies a real or complex 'triangular-pentagonal' blocked reflector to a real or complex matrix, which is composed of two blocks.Function/Subroutine Documentation subroutine ctprfb (characterSIDE, characterTRANS, characterDIRECT, characterSTOREV, integerM, integerN, integerK, integerL, complex, dimension( ldv, * )V, integerLDV, complex, dimension( ldt, * )T, integerLDT, complex, dimension( lda, * )A, integerLDA, complex, dimension( ldb, * )B, integerLDB, complex, dimension( ldwork, * )WORK, integerLDWORK)CTPRFBapplies a real or complex 'triangular-pentagonal' blocked reflector to a real or complex matrix, which is composed of two blocks. Purpose:CTPRFBapplies a complex "triangular-pentagonal" block reflector H or its conjugate transpose H**H to a complex matrix C, which is composed of two blocks A and B, either from the left or right. Parameters: SIDE SIDE is CHARACTER*1 = 'L': apply H or H**H from the Left = 'R': apply H or H**H from the Right TRANS TRANS is CHARACTER*1 = 'N': apply H (No transpose) = 'C': apply H**H (Conjugate transpose) DIRECT DIRECT is CHARACTER*1 Indicates how H is formed from a product of elementary reflectors = 'F': H = H(1) H(2) . . . H(k) (Forward) = 'B': H = H(k) . . . H(2) H(1) (Backward) STOREV STOREV is CHARACTER*1 Indicates how the vectors which define the elementary reflectors are stored: = 'C': Columns = 'R': Rows M M is INTEGER The number of rows of the matrix B. M >= 0. N N is INTEGER The number of columns of the matrix B. N >= 0. K K is INTEGER The order of the matrix T, i.e. the number of elementary reflectors whose product defines the block reflector. K >= 0. L L is INTEGER The order of the trapezoidal part of V. K >= L >= 0. See Further Details. V V is COMPLEX array, dimension (LDV,K) if STOREV = 'C' (LDV,M) if STOREV = 'R' and SIDE = 'L' (LDV,N) if STOREV = 'R' and SIDE = 'R' The pentagonal matrix V, which contains the elementary reflectors H(1), H(2), ..., H(K). See Further Details. LDV LDV is INTEGER The leading dimension of the array V. If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M); if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N); if STOREV = 'R', LDV >= K. T T is COMPLEX array, dimension (LDT,K) The triangular K-by-K matrix T in the representation of the block reflector. LDT LDT is INTEGER The leading dimension of the array T. LDT >= K. A A is COMPLEX array, dimension (LDA,N) if SIDE = 'L' or (LDA,K) if SIDE = 'R' On entry, the K-by-N or M-by-K matrix A. On exit, A is overwritten by the corresponding block of H*C or H**H*C or C*H or C*H**H. See Futher Details. LDA LDA is INTEGER The leading dimension of the array A. If SIDE = 'L', LDC >= max(1,K); If SIDE = 'R', LDC >= max(1,M). B B is COMPLEX array, dimension (LDB,N) On entry, the M-by-N matrix B. On exit, B is overwritten by the corresponding block of H*C or H**H*C or C*H or C*H**H. See Further Details. LDB LDB is INTEGER The leading dimension of the array B. LDB >= max(1,M). WORK WORK is COMPLEX array, dimension (LDWORK,N) if SIDE = 'L', (LDWORK,K) if SIDE = 'R'. LDWORK LDWORK is INTEGER The leading dimension of the array WORK. If SIDE = 'L', LDWORK >= K; if SIDE = 'R', LDWORK >= M. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: September 2012 Further Details: The matrix C is a composite matrix formed from blocks A and B. The block B is of size M-by-N; if SIDE = 'R', A is of size M-by-K, and if SIDE = 'L', A is of size K-by-N. If SIDE = 'R' and DIRECT = 'F', C = [A B]. If SIDE = 'L' and DIRECT = 'F', C = [A] [B]. If SIDE = 'R' and DIRECT = 'B', C = [B A]. If SIDE = 'L' and DIRECT = 'B', C = [B] [A]. The pentagonal matrix V is composed of a rectangular block V1 and a trapezoidal block V2. The size of the trapezoidal block is determined by the parameter L, where 0<=L<=K. If L=K, the V2 block of V is triangular; if L=0, there is no trapezoidal block, thus V = V1 is rectangular. If DIRECT = 'F' and STOREV = 'C': V = [V1] [V2] - V2 is upper trapezoidal (first L rows of K-by-K upper triangular) If DIRECT = 'F' and STOREV = 'R': V = [V1 V2] - V2 is lower trapezoidal (first L columns of K-by-K lower triangular) If DIRECT = 'B' and STOREV = 'C': V = [V2] [V1] - V2 is lower trapezoidal (last L rows of K-by-K lower triangular) If DIRECT = 'B' and STOREV = 'R': V = [V2 V1] - V2 is upper trapezoidal (last L columns of K-by-K upper triangular) If STOREV = 'C' and SIDE = 'L', V is M-by-K with V2 L-by-K. If STOREV = 'C' and SIDE = 'R', V is N-by-K with V2 L-by-K. If STOREV = 'R' and SIDE = 'L', V is K-by-M with V2 K-by-L. If STOREV = 'R' and SIDE = 'R', V is K-by-N with V2 K-by-L. Definition at line 251 of file ctprfb.f.AuthorGenerated automatically by Doxygen for LAPACK from the source code.Version 3.4.2Tue Sep 25 2012 ctprfb.f(3)

List of man pages available for

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]

Polar

Member of Polar

Based on Fawad Halim's script.

....................................................................

Vote for polarhome |