Class::Multimethods man page on OpenSuSE

Man page or keyword search:  
man Server   25941 pages
apropos Keyword Search (all sections)
Output format
OpenSuSE logo
[printable version]

Class::Multimethods(3)User Contributed Perl DocumentatioClass::Multimethods(3)

NAME
       Class::Multimethods - Support multimethods and function overloading in
       Perl

VERSION
       This document describes version 1.70 of Class::Multimethods, released
       April  9, 2000.

SYNOPSIS
	# IMPORT THE multimethod DECLARATION SUB...

	   use Class::Multimethods;

	# DECLARE VARIOUS MULTIMETHODS CALLED find...

	# 1. DO THIS IF find IS CALLED WITH A Container REF AND A Query REF...

	   multimethod find => (Container, Query)
			    => sub { $_[0]->findquery($_[1]) };

	# 2. DO THIS IF find IS CALLED WITH A Container REF AND A Sample REF...

	   multimethod find => (Container, Sample)
			    => sub { $_[0]->findlike($_[1]) };

	# 3. DO THIS IF find IS CALLED WITH AN Index REF AND A Word REF...

	   multimethod find => (Index, Word)
			    => sub { $_[0]->lookup_word($_[1]) };

	# 4. DO THIS IF find IS CALLED WITH AN Index REF AND A qr// PATTERN

	   multimethod find => (Index, Regexp)
			    => sub { $_[0]->lookup_rx($_[1]) };

	# 5. DO THIS IF find IS CALLED WITH AN Index REF AND A NUMERIC SCALAR

	   multimethod find => (Index, '#')
			    => sub { $_[0]->lookup_elem($_[1]) };

	# 6. DO THIS IF find IS CALLED WITH AN Index REF AND A NON-NUMERIC SCALAR

	   multimethod find => (Index, '$')
			    => sub { $_[0]->lookup_str($_[1]) };

	# 7. DO THIS IF find IS CALLED WITH AN Index REF AND AN UNBLESSED ARRAY REF
	#    (NOTE THE RECURSIVE CALL TO THE find MULTIMETHOD)

	   multimethod find => (Index, ARRAY)
			    => sub { map { find($_[0],$_) } @{$_[1]} };

	# SET UP SOME OBJECTS...

	       my $cntr = new Container ('./datafile');
	       my $indx = $cntr->get_index();

	# ...AND SOME INHERITANCE...

	       @BadWord::ISA = qw( Word );
	       my $badword = new BadWord("fubar");

	# ...AND EXERCISE THEM...

	       print find($cntr, new Query('cpan OR Perl'));	       # CALLS 1.
	       print find($cntr, new Example('by a committee'));       # CALLS 2.

	       print find($indx, new Word('sugar'));		       # CALLS 3.
	       print find($indx, $badword);			       # CALLS 3.
	       print find($indx, qr/another brick in the Wall/);       # CALLS 4.
	       print find($indx, 7);				       # CALLS 5.
	       print find($indx, 'But don't do that.');		       # CALLS 6.
	       print find($indx, [1,"one"]);			       # CALLS 7,
								       # THEN 5 & 6.

DESCRIPTION
       The Class:Multimethod module exports a subroutine (&multimethod) that
       can be used to declare other subroutines that are dispatched using a
       algorithm different from the normal Perl subroutine or method dispatch
       mechanism.

       Normal Perl subroutines are dispatched by finding the appropriately-
       named subroutine in the current (or specified) package and calling
       that. Normal Perl methods are dispatched by attempting to find the
       appropriately-named subroutine in the package into which the invoking
       object is blessed or, failing that, recursively searching for it in the
       packages listed in the appropriate @ISA arrays.

       Class::Multimethods multimethods are dispatched quite differently. The
       dispatch mechanism looks at the classes or types of each argument to
       the multimethod (by calling "ref" on each) and determines the "closest"
       matching variant of the multimethod, according to the argument types
       specified in the variants' definitions (see "Finding the "nearest"
       multimethod" for a definition of "closest").

       The result is something akin to C++'s function overloading, but more
       intelligent, since multimethods take the inheritance relationships of
       each argument into account. Another way of thinking of the mechanism is
       that it performs polymorphic dispatch on every argument of a method,
       not just the first.

   Defining multimethods
       The Class::Multimethods module exports a subroutine called
       "multimethod", which can be used to specify multimethod variants with
       the dispatch behaviour described above. The "multimethod" subroutine
       takes the name of the desired multimethod, a list of class names, and a
       subroutine reference, and generates a corresponding multimethod variant
       within the current package.

       For example, the declaration:

	       package LargeInt;   @ISA = (LargeNumeric);
	       package LargeFloat; @ISA = (LargeNumeric);

	       package LargeNumeric;
	       use Class::Multimethods;

	       multimethod divide => (LargeInt, LargeInt) => sub
	       {
		       LargeInt::divide($_[0],$_[1]);
	       };

	       multimethod divide => (LargeInt, LargeFloat) => sub
	       {
		       LargeFloat::divide($_[0]->AsLargeFloat(),$_[1]));
	       };

       creates a (single!) multimethod &LargeNumeric::divide with two
       variants.  If the multimethod is called with two references to
       "LargeInt" objects as arguments, the first variant (i.e. anonymous
       subroutine) is invoked. If the multimethod is called with a "LargeInt"
       reference and a "LargeFloat" reference, the second variant is called.

       Note that if you're running under "use strict", the list of bareword
       class names in each variant definition will cause problems.  In that
       case you'll need to say:

	       multimethod divide => ('LargeInt', 'LargeInt') => sub
	       {
		       LargeInt::divide($_[0],$_[1]);
	       };

	       multimethod divide => ('LargeInt', 'LargeFloat') => sub
	       {
		       LargeFloat::divide($_[0]->AsLargeFloat(),$_[1]));
	       };

       or better still:

	       multimethod divide => qw( LargeInt LargeInt ) => sub
	       {
		       LargeInt::divide($_[0],$_[1]);
	       };

	       multimethod divide => qw( LargeInt LargeFloat ) => sub
	       {
		       LargeFloat::divide($_[0]->AsLargeFloat(),$_[1]));
	       };

       or best of all (;-):

	       {
		   no strict;

		   multimethod divide => (LargeInt, LargeInt) => sub
		   {
		       LargeInt::divide($_[0],$_[1]);
		   };

		   multimethod divide => (LargeInt, LargeFloat) => sub
		   {
		       LargeFloat::divide($_[0]->AsLargeFloat(),$_[1]));
		   };
	       }

       Calling the multimethod with any other combination of "LargeNumeric"
       reference arguments (e.g. a reference to a "LargeFloat" and a reference
       to a "LargeInt", or two "LargeFloat" referencess) results in an
       exception being thrown, with the message:

	       No viable candidate for call to
	       multimethod LargeNumeric::divide at ...

       To avoid this, we could provide a "catch-all" variant:

	       multimethod divide => (LargeNumeric, LargeNumeric) => sub
	       {
		       LargeFloat::divide($_[0]->AsLargeFloat(),$_[1]->AsLargeFloat));
	       }

       Now, calling &LargeNumeric::divide with either a "LargeFloat" reference
       and a "LargeInt" reference or two "LargeFloat" references results in
       this third variant being invoked. Note that, adding this third
       alternative doesn't affect calls to the other two, since
       Class::Multimethods always selects the "nearest" match (see "Finding
       the "nearest" multimethod" below for details of what "nearest" means).

       This "best fit" behaviour is extremely useful, because it means you can
       code the specific cases you want to handle, and the one or more "catch-
       all" cases to deal with any other combination of arguments.

   Finding the "nearest" multimethod
       Of course, the usefulness of the entire system depends on how
       intelligently Class::Multimethods decides which version of a
       multimethod is "nearest" to the set of arguments you provided. This
       decision process is called "dispatch resolution", and
       Class::Multimethods does it like this:

       1.  If the types of the arguments given (as determined by "ref")
	   exactly match the types specified in any variant of the
	   multimethod, that variant is the one called.

       2.  Otherwise, Class::Multimethods compiles a list of "viable targets".
	   A viable target is a variant of the multimethod with the correct
	   number of parameters, such that for each parameter the specified
	   parameter type is a base class of the actual type of the
	   corresponding argument in the actual call.

       3.  If there is only one viable target, it is immediately called. if
	   there are no viable targets, an exception is thrown indicating the
	   fact.

       4.  Otherwise, Class::Multimethod examines each viable target and
	   computes its "distance" to the actual set of arguments. The
	   distance of a target is the sum of the distances of each of its
	   parameters. The distance of an individual parameter is the number
	   of inheritance steps between its class and the actual class of the
	   corresponding argument.

	   Hence, if a specific argument is of the same class as the
	   corresponding parameter type, the distance to that parameter is
	   zero.  If the argument is of a class that is an immediate child of
	   the parameter type, the distance is 1. If the argument is of a
	   class which is a "grandchild" of the parameter type, the distance
	   is 2. Et cetera.

       5.  Class::Multimethod then chooses the viable target with the smallest
	   "distance" as the "final target". If there is more than one viable
	   target with an equally smallest distance, an exception is thrown
	   indicating that the call is ambiguous. If there is only a single
	   final target Class::Multimethod records its identity (so the
	   distance computations don't have to be repeated next time the same
	   set of argument types is used), and then calls that final target.

   Where to define multimethods
       Class::Multimethods doesn't care which packages the individual variants
       of a multimethod are defined in. Every variant of a multimethod is
       visible to the underlying multimethod dispatcher, no matter where it
       was defined.

       For example, the three variants for the "divide" multimethod shown
       above could all be defined in the LargeNumeric package, or the
       LargeFloat package or the LargeInt package, or in "main", or in a
       separate package of their own.

       Of course, to make a specific multimethod visible within a given
       package you still need to tell that package about it. That can be done
       by specifying the name of the multimethod only (i.e. no argument list
       or variant code):

	       package Some::Other::Package::That::Wants::To::Use::divide;

	       use Class::Multimethods;
	       multimethod "divide";

       For convenience, the declaration itself can be abbreviated to:

	       package Some::Other::Package::That::Wants::To::Use::divide;

	       use Class::Multimethods "divide";

       Similarly, Class::Multimethod doesn't actually care whether
       multimethods are called as methods or as regular subroutines. This is
       quite different from the behaviour of normal Perl methods and
       subroutines, where how you call them, determines how they are
       dispatched.

       With multimethods, since all arguments participate in the polymorphic
       resolution of a call (instead of just the first), it make no difference
       whether a multimethod is called as a subroutine:

	       numref3 = divide($numref1, $numref2);

       or a method:

	       numref3 = $numref1->divide($numref2);

       (so long as the multimethod has been declared in the appropriate place:
       the current package for subroutine-like calls, or the invoking object's
       package for method-like calls).

       In other words, Class::Multimethods also provides general subroutine
       overloading. For example:

	       package main;
	       use IO;
	       use Class::Multimethods;

	       multimethod debug => (IO::File) => sub
	       {
		       print $_[0] "This should go in a file\n";
	       }

	       multimethod debug => (IO::Pipe) => sub
	       {
		       print $_[0] "This should go down a pipe\n";
	       }

	       multimethod debug => (IO::Socket) => sub
	       {
		       print $_[0] "This should go out a socket\n";
	       }

	       # and later

	       debug($some_io_handle);

   Non-class types as parameters
       Yet another thing Class::Multimethods doesn't care about is whether the
       parameter types for each multimethod variant are the names of "real"
       classes or just the identifiers returned when raw Perl data types are
       passed to the built-in "ref" function. That means you could also define
       multimethod variants like this:

	       multimethod stringify => (ARRAY) => sub
	       {
		       my @arg = @{$_[0]};
		       return "[" .  join(", ",@arg) . "]";
	       }

	       multimethod stringify => (HASH) => sub
	       {
		       my %arg = %{$_[0]};
		       return "{" . join(", ", map("$_=>$arg{$_}",keys %arg)) . "}";
	       }

	       multimethod stringify => (CODE) => sub
	       {
		       return "sub {???}";
	       }

	       # and later

	       print stringify( [1,2,3] ), "\n";
	       print stringify( {a=>1,b=>2,c=>3} ), "\n";
	       print stringify( $array_or_hash_ref ), "\n";

       Provided you remember that the parameter types ARRAY, HASH, and CODE
       really mean "reference to array", "reference to hash", and "reference
       to subroutine", the names of built-in types (i.e. those returned by
       "ref") are perfectly acceptable as multimethod parameters.

       That's a nice bonus, but there's a problem. Because "ref" returns an
       empty string when given any literal string or numeric value, the
       following code:

	       print stringify( 2001 ), "\n";
	       print stringify( "a multiple dispatch oddity" ), "\n";

       will produce a nasty surprise:

	       No viable candidate for call to multimethod stringify() at line 1

       That's because the dispatch resolution process first calls "ref(2001)"
       to get the class name for the first argument, and therefore thinks it's
       of class "". Since there's no "stringify" variant with an empty string
       as its parameter type, there are no viable targets for the multimethod
       call. Hence the exception.

       To overcome this limitation, Class::Multimethods allows three special
       pseudo-type names within the parameter lists of multimethod variants.
       The first pseudo-type - "$" - is the class that Class::Multimethods
       pretends that any scalar value (except a reference) belongs to. Hence,
       you can make the two recalcitrant stringifications of scalars work by
       defining:

	       multimethod stringify => ("$")
		       => sub { return qq{"$_[0]"} }

       With that definition in place, the two calls:

	       print stringify( 2001 ), "\n";
	       print stringify( "a multiple dispatch oddity" ), "\n";

       would produce:

	       "2001"
	       "a multiple dispatch oddity"

       That solves the problem, but not as elegantly as it might. It would be
       better if numeric values were left unquoted. To this end,
       Class::Multimethods offers a second pseudo-type - "#" - which is the
       class it pretends numeric scalar values belong to (where a scalar value
       is "numeric" if it's truly a numerical value (without implicit
       coercions):

	       $var = 0	       # numeric --> '$'
	       $var = 0.0      # numeric --> '$'
	       $var = "0";     # string	 --> '#'

       Hence you could now also define:

	       multimethod stringify => ("#")
		       => sub { return "+$_[0]" }

       the two calls to &stringify now produce:

	       +2001
	       "a multiple dispatch oddity"

       The final pseudo-type - "*" - is a wild-card or "don't care" type
       specifier, which matches any argument type exactly. For example, we
       could provide a "catch-all" "stringify" variant (to handle "GLOB" or
       "IO" references, for example):

	       multimethod stringify => ("*")
		       => sub { croak "can't stringify a " . ref($_[0]) }

       The "*" pseudo-type can also be used in multiple-argument multimethods.
       For example:

	       # General case...

		   multimethod handle => (Window, Event, Mode)
		       => sub { ... }

	       # Special cases...

		   multimethod handle => (MovableWindow, MoveEvent, NormalMode)
		       => sub { ... }

		   multimethod handle => (ScalableWindow, ResizeEvent, NormalMode)
		       => sub { ... }

	       # Very special case
	       # (ignore any event in any window in PanicMode)

		   multimethod handle => ("*", "*", PanicMode)
		       => sub { ... }

   Resolving ambiguities and non-dispatchable calls
       It's relatively easy to set up a multimethod such that particular
       combinations of argument types cannot be correctly dispatched. For
       example, consider the following variants of a multimethod called
       "put_peg":

	       multimethod put_peg => (RoundPeg,Hole) => sub
	       {
		       print "a round peg in any old hole\n";
	       };

	       multimethod put_peg => (Peg,SquareHole) => sub
	       {
		       print "any old peg in a square hole\n";
	       };

	       multimethod put_peg => (Peg,Hole) => sub
	       {
		       print "any old peg in any old hole\n";
	       };

       If "put_peg" is called like so:

	       put_peg( RoundPeg->new(), SquareHole->new() );

       then Class::Multimethods can't dispatch the call, because it cannot
       decide between the "(RoundPeg,Hole)" and "(Peg,SquareHole)" variants,
       each of which is the same "distance" (i.e. 1 derivation) from the
       actual arguments.

       The default behaviour is to throw an exception (i.e. die) like this:

	       Cannot resolve call to multimethod put_peg(RoundPeg,SquareHole).
	       The multimethods:
		       put_peg(RoundPeg,Hole)
		       put_peg(Peg,SquareHole)
	       are equally viable at ...

       Sometimes, however, the more specialized variants are only
       optimizations, and a more general case (e.g. the "(Peg,Hole)" variant)
       would suffice as a default where such an ambiguity exists. If that is
       the case, it's possible to tell Class::Multimethods to resolve the
       ambiguity by calling that variant, using the "resolve_ambiguous"
       subroutine. "resolve_ambiguous" is automatically exported by
       Class::Multimethods and is used like this:

	       resolve_ambiguous put_peg => (Peg,Hole);

       That is, you specify the name of the multimethod being disambiguated,
       and the signature of the variant to be used in ambiguous cases. Of
       course, the specified variant must actually exist at the time of the
       call. If it doesn't, Class::Multimethod ignores it and throws the usual
       exception.

       Alternatively, if no variant is suitable as a default, you can register
       a reference to a subroutine that is to be called instead:

	       resolve_ambiguous put_peg => \&disambiguator;

       Now, whenever "put_peg" can't dispatch a call because it's ambiguous,
       "disambiguator" will be called instead, with the same argument list as
       "put_peg" was given.

       Of course, "resolve_ambiguous" doesn't care what subroutine it's given
       a reference to, so you can also use an anonymous subroutine:

	       resolve_ambiguous put_peg
		       => sub
			  {
			       print "can't put a ", ref($_[0]),
				     " into a ", ref($_[1]), "\n";
			  };

       Dispatch can also fail if there are no suitable variants available to
       handle a particular call. For example:

	       put_peg( JPEG->new(), Loophole->new() );

       which would normally produce the exception:

	       No viable candidate for call to
	       multimethod put_peg(JPeg,Loophole) at ...

       since classes JPEG and Loophole are't in the Peg and Hole hierarchies,
       so there's no inheritance path back to a more general variant.

       To handle cases like this, you can use the <resolve_no_match>
       subroutine, which is also exported from Class::Multimethods.
       "resolve_no_match" registers a multimethod variant, or a reference to
       some other subroutine, that is then used whenever the dispatch
       mechanism can't find a suitable variant for a given multimethod call.

       For example:

	       resolve_no_match put_peg
		       => sub
			  {
			       put_jpeg(@_)
				       if ref($_[0]) eq 'JPEG';
			       shift()->hang(@_)
				       if ref($_[0]) eq 'ClothesPeg';
			       hammer(@_)
				       if ref($_[0]) eq 'TentPeg';
			       # etc.

			  };

       As with "resolve_ambiguous" the registered variant or subroutine is
       called with the same set of arguments that were passed to the original
       multimethod call.

   Redispatching multimethod calls
       Sometimes a polymorphic method in a derived class is used to add
       functionality to an inherited method. For example, a derived class's
       "print_me" method might call it's base class's "print_me", making use
       of Perl's special "$obj-"SUPER::method()> construct:

	       class Base;

	       sub print_me
	       {
		       my ($self) = @_;
		       print "Base stuff\n";
	       }

	       class Derived; @ISA = qw( Base );

	       sub print_me
	       {
		       my ($self) = @_;
		       $self->SUPER::print_me();       # START LOOKING IN ANCESTORS
		       print "Derived stuff\n";
	       }

       If the "print_me" methods are implemented as multimethods, it's still
       possible to reinvoke an "ancestral" method, using the automatically
       exported "Class::Multimethods::superclass" subroutine:

	       use Class::Multimethods;

	       multimethod print_me => (Base) => sub
	       {
		       my ($self) = @_;
		       print "Base stuff\n";
	       }

	       multimethod print_me => (Derived) => sub
	       {
		       my ($self) = @_;
		       print_me( superclass($self) );  # START LOOKING IN ANCESTORS
		       print "Derived stuff\n";
	       }
	       }

       Applying "superclass" to the multimethod argument tells
       Class::Multimethod to start looking for parameter types amongst the
       ancestors of Derived.

       It's also possible in regular Perl to explcitly tell the polymorphic
       dispacther where to start looking, by explicitly qualifying the method
       name:

	       sub Derived::print_me
	       {
		       my ($self) = @_;
		       $self->Base::print_me();	       # START LOOKING IN Base CLASS
		       print "Derived stuff\n";
	       }

       The same is possible with multimethods. "superclass" takes an optional
       second argument that tells Class::Multimethods exactly where to start
       looking:

	       multimethod print_me => (Derived) => sub
	       {
		       my ($self) = @_;
		       print_me( superclass($self => Base) );  # START LOOKING IN Base
		       print "Derived stuff\n";
	       }

       Note that, unlike regular method calls, with multimethods you can apply
       the "superclass" subroutine to any or all of a multimethod's arguments.
       For example:

	       multimethod handle => (MovableWindow, MoveEvent, NormalMode) => sub
	       {
		       my ($w, $e, $m) = @_;

		       # Do any special stuff,
		       # then redispatch to more general handler...

		       handle(superclass($w), $e, superclass($m => Mode) );
	       }

       In this case the redispatch would start looking for variants which
       matched "(any of MovableWindow's ancestors, MoveEvent, Mode)".

       It's also important to remember that, as with regular methods, the
       class of the actual arguments doesn't change just because we subverted
       the dispatch sequence. That means if the above redispatch called the
       handle variant that takes arguments (Window, MoveEvent, Mode), the
       actual arguments would still be of types (MovableWindow, MoveEvent,
       NormalMode).

DIAGNOSTICS
       If you call "multimethod" and forget to provide a code reference as the
       last argument, it "die"s with the message:

	       "multimethod: last arg must be a code reference at %s"

       If the dispatch mechanism cannot find any multimethod with a signature
       matching the actual arguments, it "die"s with the message:

	       "No viable candidate for call to multimethod %s at %s"

       If the dispatch mechanism finds two or more multimethods with
       signatures equally "close" to the actual arguments (see "The dispatch
       resolution process"), it "die"s with the message:

	       "Cannot resolve call to multimethod %s. The multimethods:
		       %s
		are equally viable at %s"

       If you specify two variants with the same parameter lists,
       Class::Multimethods warns:

	       "Multimethod %s redefined at %s"

       but only if $^W is true (i.e. under the "-w" flag).

AUTHOR
       Damian Conway (damian@conway.org)

BUGS AND IRRITATIONS
       There are undoubtedly serious bugs lurking somewhere in code this
       complex :-) Bug reports and other feedback are most welcome.

       Ongoing annoyances include:

       ·   The module uses qr// constructs to improve performance. Hence it
	   won't run under Perls earlier than 5.005.

       ·   Multimethod dispatch is much slower than regular dispatch when the
	   resolution has to resort to the more generic cases (though it's
	   actually as very nearly as fast as doing the equivalent type
	   resolution "by hand", and certainly more reliable and maintainable)

       ·   The cache management is far too dumb. Adding any new multimethod
	   clobbers the entire cache, when it should only expunge those
	   entries "upstream" from the the new multimethod's actual parameter
	   types.

	   It's unclear, however, under what circumstances the expense of a
	   more careful cache correction algorithm would ever be recouped by
	   the savings in dispatch (well, obviously, when the installion of
	   multimethods is a rare event and multimethod dispatching is
	   frequent, but where is the breakeven point?)

COPYRIGHT
	       Copyright (c) 1998-2000, Damian Conway. All Rights Reserved.
	     This module is free software. It may be used, redistributed
	     and/or modified under the terms of the Perl Artistic License
		  (see http://www.perl.com/perl/misc/Artistic.html)

perl v5.18.1			  2000-04-09		Class::Multimethods(3)
[top]

List of man pages available for OpenSuSE

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]
Tweet
Polarhome, production since 1999.
Member of Polarhome portal.
Based on Fawad Halim's script.
....................................................................
Vote for polarhome
Free Shell Accounts :: the biggest list on the net