ATAN2(3) BSD Library Functions Manual ATAN2(3)[top]NAMEatan2, atan2f, atan2l, carg, cargf, cargl — arc tangent and complex phase angle functionsLIBRARYMath Library (libm, -lm)SYNOPSIS#include <math.h> double atan2(double y, double x); float atan2f(float y, float x); long double atan2l(long double y, long double x); #include <complex.h> double carg(double complex z); float cargf(float complex z); long double cargl(long double complex z);DESCRIPTIONThe atan2(), atan2f(), and atan2l() functions compute the principal value of the arc tangent of y/x, using the signs of both arguments to determine the quadrant of the return value. The carg(), cargf(), and cargl() functions compute the complex argument (or phase angle) of z. The complex argument is the number θ such that z = r * e^(I * θ), where r = cabs(z). The call carg(z) is equivalent to atan2(cimag(z), creal(z)), and similarly for cargf() and cargl().RETURN VALUESThe atan2(), atan2f(), and atan2l() functions, if successful, return the arc tangent of y/x in the range [-π, +π] radians. Here are some of the special cases: atan2(y, x) := atan(y/x) if x > 0, sign(y)*(π - atan(|y/x|)) if x < 0, 0 if x = y = 0, or sign(y)*π/2 if x = 0 ≠ y.NOTESThe function atan2() defines "if x > 0," atan2(0, 0) = 0 despite that previously atan2(0, 0) may have generated an error message. The reasons for assigning a value to atan2(0, 0) are these: 1. Programs that test arguments to avoid computing atan2(0, 0) must be indifferent to its value. Programs that require it to be invalid are vulnerable to diverse reactions to that inva‐ lidity on diverse computer systems. 2. The atan2() function is used mostly to convert from rectangu‐ lar (x,y) to polar (r,theta) coordinates that must satisfy x = r∗cos theta and y = r∗sin theta. These equations are satis‐ fied when (x=0,y=0) is mapped to (r=0,theta=0). In general, conversions to polar coordinates should be computed thus: r := hypot(x,y); ... := sqrt(x∗x+y∗y) theta := atan2(y,x). 3. The foregoing formulas need not be altered to cope in a rea‐ sonable way with signed zeros and infinities on a machine that conforms to IEEE 754; the versions of hypot(3) and atan2() provided for such a machine are designed to handle all cases. That is why atan2(±0, -0) = ±π for instance. In general the formulas above are equivalent to these: r := sqrt(x∗x+y∗y); if r = 0 then x := copysign(1,x);SEE ALSOacos(3), asin(3), atan(3), cabs(3), cos(3), cosh(3), math(3), sin(3), sinh(3), tan(3), tanh(3)STANDARDSThe atan2(), atan2f(), atan2l(), carg(), cargf(), and cargl() functions conform to ISO/IEC 9899:1999 (“ISO C99”).BSDJuly 31, 2008 BSD

List of man pages available for

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]

Polar

Member of Polar

Based on Fawad Halim's script.

....................................................................

Vote for polarhome |