ccoomm man page on OpenIndiana

Man page or keyword search:  
man Server   20441 pages
apropos Keyword Search (all sections)
Output format
OpenIndiana logo
[printable version]

ccoomm(3P)		    Sun Performance Library		    ccoomm(3P)

NAME
       ccoomm - coordinate matrix-matrix multiply

SYNOPSIS
	SUBROUTINE CCOOMM( TRANSA, M, N, K, ALPHA, DESCRA,
       *	   VAL, INDX, JNDX, NNZ,
       *	   B, LDB, BETA, C, LDC, WORK, LWORK )
	INTEGER	   TRANSA, M, N, K, DESCRA(5), NNZ
       *	   LDB, LDC, LWORK
	INTEGER	   INDX(NNZ), JNDX(NNZ)
	COMPLEX	   ALPHA, BETA
	COMPLEX	   VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

	SUBROUTINE CCOOMM_64( TRANSA, M, N, K, ALPHA, DESCRA,
       *	   VAL, INDX, JNDX, NNZ,
       *	   B, LDB, BETA, C, LDC, WORK, LWORK )
	INTEGER*8  TRANSA, M, N, K, DESCRA(5), NNZ
       *	   LDB, LDC, LWORK
	INTEGER*8  INDX(NNZ), JNDX(NNZ)
	COMPLEX	   ALPHA, BETA
	COMPLEX	   VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

   F95 INTERFACE
	SUBROUTINE COOMM( TRANSA, M, [N], K, ALPHA, DESCRA,
       *	   VAL, INDX, JNDX, NNZ, B, [LDB], BETA, C, [LDC],
       *	   [WORK], [LWORK] )
	INTEGER TRANSA, M, K,  NNZ
	INTEGER, DIMENSION(:) ::   DESCRA, INDX, JNDX
	COMPLEX	   ALPHA, BETA
	COMPLEX, DIMENSION(:) :: VAL
	COMPLEX, DIMENSION(:, :) ::  B, C

	SUBROUTINE COOMM_64( TRANSA, M, [N], K, ALPHA, DESCRA,
       *	   VAL, INDX, JNDX, NNZ, B, [LDB], BETA, C, [LDC],
       *	   [WORK], [LWORK] )
	INTEGER*8 TRANSA, M, K,	 NNZ
	INTEGER*8, DIMENSION(:) ::   DESCRA, INDX, JNDX
	COMPLEX	   ALPHA, BETA
	COMPLEX, DIMENSION(:) :: VAL
	COMPLEX, DIMENSION(:, :) ::  B, C

   C INTERFACE
       #include <sunperf.h>

       void ccoomm (const int transa, const int m, const int n, const int k,
		 const floatcomplex* alpha, const int* descra, const floatcom‐
		 plex* val, const int* indx, const int* jndx, const int nnz,
		 const floatcomplex* b, const int ldb, const floatcomplex*
		 beta, floatcomplex* c, const int ldc);

       void ccoomm_64 (const long transa, const long m, const long n, const
		 long k, const floatcomplex* alpha, const long* descra, const
		 floatcomplex* val, const long* indx, const long* jndx, const
		 long nnz, const floatcomplex* b, const long ldb, const float‐
		 complex* beta, floatcomplex* c, const long ldc);

DESCRIPTION
       ccoomm performs one of the matrix-matrix operations

		C <- alpha op(A) B + beta C

       where op( A )  is one  of

       op( A ) = A   or	  op( A ) = A'	 or   op( A ) = conjg( A' )
					  ( ' indicates matrix transpose),
       A is an M-by-K sparse matrix represented in the coordinate format,
       alpha and beta  are scalars, C and B are dense matrices.

ARGUMENTS
       TRANSA(input)   On entry, integer TRANSA specifies the form
		       of op( A ) to be used in the matrix
		       multiplication as follows:
			 0 : operate with matrix
			 1 : operate with transpose matrix
			 2 : operate with the conjugate transpose of matrix.
			   2 is equivalent to 1 if matrix is real.
		       Unchanged on exit.

       M(input)	       On entry, integer M  specifies the number of rows in
		       the matrix A. Unchanged on exit.

       N(input)	       On entry, integer N specifies the number of columns in
		       the matrix C. Unchanged on exit.

       K(input)	       On entry, integer K specifies the number of columns
		       in the matrix A. Unchanged on exit.

       ALPHA(input)    On entry, ALPHA specifies the scalar alpha. Unchanged on exit.

       DESCRA (input)  Descriptor argument.  Five element integer array.
		       DESCRA(1) matrix structure
			 0 : general
			 1 : symmetric (A=A')
			 2 : Hermitian (A= CONJG(A'))
			 3 : Triangular
			 4 : Skew(Anti)-Symmetric (A=-A')
			 5 : Diagonal
			 6 : Skew-Hermitian (A= -CONJG(A'))
		       DESCRA(2) upper/lower triangular indicator
			 1 : lower
			 2 : upper
		       DESCRA(3) main diagonal type
			 0 : non-unit
			 1 : unit
		       DESCRA(4) Array base (NOT IMPLEMENTED)
			 0 : C/C++ compatible
			 1 : Fortran compatible
		       DESCRA(5) repeated indices? (NOT IMPLEMENTED)
			 0 : unknown
			 1 : no repeated indices

       VAL (input)     On entry, VAL is a scalar array array of length
		       NNZ consisting of the non-zero entries of A,
		       in any order. Unchanged on exit.

       INDX (input)    On entry, INDX is an integer array of length NNZ
		       consisting of the corresponding row indices of
		       the entries of A. Unchanged on exit.

       JNDX (input)    On entry, JNDX is an integer array of length NNZ
		       consisting of the corresponding column indices of
		       the entries of A. Unchanged on exit.

       NNZ (input)     On entry, integer NNZ specifies the number of
		       non-zero elements in A. Unchanged on exit.

       B (input)       Array of DIMENSION ( LDB, N ).
		       Before entry with  TRANSA = 0,  the leading  k by n
		       part of the array  B  must contain the matrix  B,  otherwise
		       the leading  m by n  part of the array  B  must contain	the
		       matrix B. Unchanged on exit.

       LDB (input)     On entry, LDB specifies the first dimension of B as declared
		       in the calling (sub) program. Unchanged on exit.

       BETA (input)    On entry, BETA specifies the scalar beta. Unchanged on exit.

       C(input/output) Array of DIMENSION ( LDC, N ).
		       Before entry with  TRANSA = 0,  the leading  m by n
		       part of the array C must contain the matrix C,  otherwise
		       the leading  k by n  part of the array  C  must contain	the
		       matrix C. On exit, the array  C	is overwritten by the  matrix
		       ( alpha*op( A )* B  + beta*C ).

       LDC (input)     On entry, LDC specifies the first dimension of C as declared
		       in the calling (sub) program. Unchanged on exit.

       WORK (is not referenced in the current version)

       LWORK (is not referenced in the current version)

SEE ALSO
       Libsunperf  SPARSE BLAS is fully parallel and compatible with NIST FOR‐
       TRAN Sparse Blas but the sources are different.	Libsunperf SPARSE BLAS
       is free of bugs found in NIST FORTRAN Sparse Blas.  Besides several new
       features and routines are implemented.

       NIST FORTRAN Sparse Blas User's Guide available at:

       http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

       Based on the standard proposed in

       "Document for the Basic Linear Algebra Subprograms (BLAS) Standard",
       University of Tennessee, Knoxville, Tennessee, 1996:

       http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
       The all complex sparse blas matrix-matrix multiply routines except the
       skyline and jagged-diagonal format routines  are designed so that if
       DESCRA(1)> 0,  the routines check the validity of each sparse entry
       given in the sparse blas representation.	 Entries with incorrect
       indices are not used and no error message related to the entries is
       issued.

       The feature also provides a possibility to use just one sparse matrix
       representation of a general matrix A for computing  matrix-matrix mul‐
       tiply for another sparse matrix composed	 by  triangles and/or the main
       diagonal of A .

       Assume that there is the sparse matrix representation of a general com‐
       plex matrix A decomposed in the form

			    A = L + D + U

       where L is the strictly lower triangle of A, U is the strictly upper
       triangle of A, D is the diagonal matrix. Let's I denotes the identity
       matrix.

       Then the correspondence between the first three values of DESCRA and
       the result matrix for the sparse representation of A is
       ___________________________________________________________________

       DESCRA(1)  DESCRA(2)  DESCRA(3)	     RESULT

       ___________________________________________________________________

	 1	     1	       0      alpha*op(L+D+L')*B+beta*C

	 1	     1	       1      alpha*op(L+I+L')*B+beta*C

	 1	     2	       0      alpha*op(U'+D+U)*B+beta*C

	 1	     2	       1      alpha*op(U'+I+U)*B+beta*C

	 2	     1	       0      alpha*op(L+D+conjg(L'))*B+beta*C

	 2	     1	       1      alpha*op(L+I+conjg(L'))*B+beta*C

	 2	     2	       0      alpha*op(conjg(U')+D+U)*B+beta*C

	 2	     2	       1      alpha*op(conjg(U')+I+U)*B+beta*C

	 3	     1	       1      alpha*op(L+I)*B+beta*C

	 3	     1	       0      alpha*op(L+D)*B+beta*C

	 3	     2	       1      alpha*op(U+I)*B+beta*C

	 3	     2	       0      alpha*op(U+D)*B+beta*C

	 4	     1	     0 or 1   alpha*op(L-L')*B+beta*C

	 4	     2	     0 or 1   alpha*op(U-U')*B+beta*C

	 5	  1 or 2       0      alpha*op(D)*B+beta*C

	 5	  1 or 2       1      alpha*B+beta*C

	 6	     1	     0 or 1   alpha*op(L-conjg(L'))*B+beta*C

	 6	     2	     0 or 1   alpha*op(U-conjg(U'))*B+beta*C

       ___________________________________________________________________

       Remarks to the table:

       1. the value of	DESCRA(3) is simply ignored and the diagonal entries
       given in the sparse matrix representation are not used by the routine,
       if DESCRA(1)= 4 or 6;

       2.  the diagonal entries are not used also, if DESCRA(3)=1 and
       DESCRA(1)is one of 1, 2, 3 or 5;

       3. if DESCRA(3) is not 1 and DESCRA(1) is one of 1,2, 4 or 6, the type
       of D should correspond to the choosen value of DESCRA(1) .

3rd Berkeley Distribution	  6 Mar 2009			    ccoomm(3P)
[top]

List of man pages available for OpenIndiana

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]
Tweet
Polarhome, production since 1999.
Member of Polarhome portal.
Based on Fawad Halim's script.
....................................................................
Vote for polarhome
Free Shell Accounts :: the biggest list on the net