dcorm1d man page on IRIX

Man page or keyword search:  
man Server   31559 pages
apropos Keyword Search (all sections)
Output format
IRIX logo
[printable version]



CCORM1D(3S)							   CCORM1D(3S)

NAME
     CCORM1D, ZCORM1D, SCORM1D, DCORM1D - Compute multiple 1D correlations

SYNOPSIS
     Single precision complex

	  Fortran:
	       CALL CCORM1D (x, incx, ldx, ix0, nx, nseq, h, inch, ih0, nh, y,
	       incy, ldy, iy0, ny)

	  C/C++:
	       #include <scsl_fft.h>
	       void ccorm1d (scsl_complex *x, int incx, int ldx, int ix0, int
	       nx, int nseq, scsl_complex *h, int inch, int ih0, int nh,
	       scsl_complex *y, int incy, int ldy, int iy0, int ny);

	  C++ STL:
	       #include <complex.h>
	       #include <scsl_fft.h>
	       void ccorm1d (complex<float> *x, int incx, int ldx, int ix0,
	       int nx, int nseq, complex<float> *h, int inch, int ih0, int nh,
	       complex<float> *y, int incy, int ldy, int iy0, int ny);

     Double precision complex

	  Fortran:
	       CALL ZCORM1D (x, incx, ldx, ix0, nx, nseq, h, inch, ih0, nh, y,
	       incy, ldy, iy0, ny)

	  C/C++:
	       #include <scsl_fft.h>
	       void zcorm1d (scsl_zomplex *x, int incx, int ldx, int ix0, int
	       nx, int nseq, scsl_zomplex *h, int inch, int ih0, int nh,
	       scsl_zomplex *y, int incy, int ldy, int iy0, int ny);

	  C++ STL:
	       #include <complex.h>
	       #include <scsl_fft.h>
	       void zcorm1d (complex<double> *x, int incx, int ldx, int ix0,
	       int nx, int nseq, complex<double> *h, int inch, int ih0, int
	       nh, complex<double> *y, int incy, int ldy, int iy0, int ny);

     Single precision

	  Fortran:
	       CALL SCORM1D (x, incx, ldx, ix0, nx, nseq, h, inch, ih0, nh, y,
	       incy, ldy, iy0, ny)

	  C/C++:
	       #include <scsl_fft.h>
	       void scorm1d (float *x, int incx, int ldx, int ix0, int nx, int
	       nseq, float *h, int inch, int ih0, int nh, float *y, int incy,

									Page 1

CCORM1D(3S)							   CCORM1D(3S)

	       int ldy, int iy0, int ny);

     Double precision

	  Fortran:
	       CALL DCORM1D (x, incx, ldx, ix0, nx, nseq, h, inch, ih0, nh, y,
	       incy, ldy, iy0, ny)

	  C/C++:
	       #include <scsl_fft.h>
	       void dcorm1d (double *x, int incx, int ldx, int ix0, int nx,
	       int nseq, double *h, int inch, int ih0, int nh, double *y, int
	       incy, int ldy, int iy0, int ny);

IMPLEMENTATION
     These routines are part of the SCSL Scientific Library and can be loaded
     using either the -lscs or the -lscs_mp option.  The -lscs_mp option
     directs the linker to use the multi-processor version of the library.

     When linking to SCSL with -lscs or -lscs_mp, the default integer size is
     4 bytes (32 bits). Another version of SCSL is available in which integers
     are 8 bytes (64 bits).  This version allows the user access to larger
     memory sizes and helps when porting legacy Cray codes.  It can be loaded
     by using the -lscs_i8 option or the -lscs_i8_mp option. A program may use
     only one of the two versions; 4-byte integer and 8-byte integer library
     calls cannot be mixed.

     The C and C++ prototypes shown above are appropriate for the 4-byte
     integer version of SCSL. When using the 8-byte integer version, the
     variables of type int become long long and the <scsl_fft_i8.h> header
     file should be included.

DESCRIPTION
     These routines compute the correlation of the filter sequence h with each
     column of the two-dimentionsal data array x, producing the output two-
     dimensional array y.

     Suppose h is a sequence of nh elements and X is a 2D matrix with nseq
     columns, and nx elements in each column, as follows:

     h = [ h(0), h(1), ..., h(nh - 1) ] ,

		      and

	   x(0, 0)     x(0, 1)	   x(0, 2)    ...  x(0, nseq-1)
	   x(1, 0)     x(1, 1)	   x(1, 2)    ...  x(1, nseq-1)
     X =   x(2, 0)     x(2, 1)	   x(2, 2)    ...  x(2, nseq-1)
		      ...	  ...	      ...	 ...  ...
	   x(nx-1, 0)  x(nx-1, 1)  x(nx-1, 2) ...  x(nx-1, nseq-1)

									Page 2

CCORM1D(3S)							   CCORM1D(3S)

     Then each column of the output matrix:

	   y(0, 0)     y(0, 1)	   y(0, 2)    ...  y(0, nseq-1)
	   y(1, 0)     y(1, 1)	   y(1, 2)    ...  y(1, nseq-1)
     Y =   y(2, 0)     y(2, 1)	   y(2, 2)    ...  y(2, nseq-1)
		      ...	  ...	      ...	 ...  ...
	   y(ny-1, 0)  y(ny-1, 1)  y(ny-1, 2) ...  y(ny-1, nseq-1)

     is obtained by correlating h with the corresponding column of X, so that:

		   nh-1
	  y(i,j) = Sum {h(k)*x(i+k,j)},	    0<=i<nx, 0<=j<nseq
		   k=0

     The matrix Y has values defined for 0 <= i < nx and 0 <= j	 < nseq.  In
     the *CORM1D routines, the number of terms in each output column is
     specified by an argument, ny.  If ny < nx, the columns of y are
     truncated.	 If ny >= nx, the terms beyond y(nx-1,j) are set to 0.

     Generally, the sequences Cx(:,j), h and y(:,j) represent signals sampled
     at equal time intervals, and the indexes of the vectors denote the sample
     times. If the signals begin at the same time, we may, without loss of
     generality, set the initial time to 0, as in the formulas above.

     The *CORM1D routines, however, permit more generality than this.  The
     signals may be time shifted from each other using input parameters
     specifiying the initial time sample for each signal. This can be useful
     in several situations. For example, if the input array has several
     leading zero values that one does not wish to store, ix0 may be set to
     the time sample corresponding to the first non-zero element in the
     columns of the input array, and earlier time samples are treated as 0.

     Note that, instead of 0, the initial time could just as easily have been
     labeled 1 or 10 or -78; the relevant point is that the first elements of
     each of the x, h and y arrays are defined to be the same time sample as
     long as ix0 = ih0 = iy0.

     See the NOTES section of this man page for information about the
     interpretation of the data types described in the following arguments.

     These routines have the following arguments:

     x	       Array of dimensions (ldx, nseq). (input).
	       CCORM1D: Single precision complex array.
	       ZCORM1D: Double precision complex array.
	       SCORM1D: Single precision array.
	       DCORM1D: Double precision array.
	       Input sequences to be correlated with h.

									Page 3

CCORM1D(3S)							   CCORM1D(3S)

     incx      Integer. (input)
	       Increment between two successive values of a sequence in x.
	       incx must not be 0.

     ldx       Integer. (input)
	       The number of rows in x as it was declared in the calling
	       program (the leading dimension of x).  ldx >= MAX(nx  *
	       incx,1).

     ix0       Integer. (input)
	       Sample corresponding to the first element of each 1D sequence
	       of x.

     nx	       Integer. (input)
	       Size of each sequence (the number of elements in each sequence
	       of x).  nx >= 0.

     nseq      Integer.	 (input)
	       The number of sequences to which the correlation will be
	       applied. nseq >= 0. If nseq = 0, the routine returns.

     h	       Array of dimension nh. (input).
	       CCORM1D: Single precision complex array.
	       ZCORM1D: Double precision complex array.
	       SCORM1D: Single precision array.
	       DCORM1D: Double precision array.
	       Input sequence to be correlated with x.

     inch      Integer.	 (input)
	       Increment between two successive values of h. inch must not be
	       0.

     ih0       Integer.	 (input)
	       Sample corresponding to the first element of h.

     nh	       Integer.	 (input)
	       The number of elements in the sequence h.  nh >= 0. If nh = 0,
	       the routine returns.

     y	       Array of dimensions (ldy, nseq).	 (output)
	       CCORM1D: Single precision complex array.
	       ZCORM1D: Double precision complex array.
	       SCORM1D: Single precision array.
	       DCORM1D: Double precision array.

     incy      Integer.	 (input)
	       Increment between two successive values of a sequence in y.
	       incy must not be 0.

     ldy       Integer.	 (input)
	       The number of rows in y as it was declared in the calling
	       program (the leading dimension of y). ldy >= MAX(ny * incy, 1).

									Page 4

CCORM1D(3S)							   CCORM1D(3S)

     iy0       Integer.	 (input)
	       Index of the first element of each 1D sequence of y.

     ny	       Integer.	 (input)
	       Number of elements in each sequence of y.  ny >= 0. If ny = 0,
	       the routine returns.

NOTES
     The following data types are described in this documentation:

	  Term Used			Data type

     Fortran:

	  Array dimensioned 0..n-1	x(0:n-1)

	  Array of dimensions (m,n)	x(m,n)

	  Array of dimensions (m,n,p)	x(m,n,p)

	  Integer			INTEGER (INTEGER*8 for -lscs_i8[_mp])

	  Single precision		REAL

	  Double precision		DOUBLE PRECISION

	  Single precision complex	COMPLEX

	  Double precision complex	DOUBLE COMPLEX

     C/C++:

	  Array dimensioned 0..n-1	x[n]

	  Array of dimensions (m,n)	x[m*n] or x[n][m]

	  Array of dimensions (m,n,p)	x[m*n*p] or x[p][n][m]

	  Integer			int (long long for -lscs_i8[_mp])

	  Single precision		float

	  Double precision		double

	  Single precision complex	scsl_complex

	  Double precision complex	scsl_zomplex

     C++ STL:

									Page 5

CCORM1D(3S)							   CCORM1D(3S)

	  Array dimensioned 0..n-1	x[n]

	  Array of dimensions (m,n)	x[m*n] or x[n][m]

	  Array of dimensions (m,n,p)	x[m*n*p] or x[p][n][m]

	  Integer			int (long long for -lscs_i8[_mp])

	  Single precision		float

	  Double precision		double

	  Single precision complex	complex<float>

	  Double precision complex	complex<double>

CAUTIONS
     The arrays x, h and y must be non-overlapping.

EXAMPLES
     The following example computes the correlation of 5 4-sample sequences x
     with a filter h containing 3 samples:

     Fortran:

	  REAL X(0:3,0:4), H(0:2), Y(0:5,0:4)

	  DO J = 0, 4
	     X(0,J) = J + 1.0
	     DO I = 1, 3
		X(I,J) = -1.0 - j
	     ENDDO
	  ENDDO
	  DO I = 0, 2
	     H(I) = 1.0/(I+1)
	  ENDDO

	  CALL SCORM1D(X, 1, 4, 0, 4, 5, H, 1, 0, 3, Y, 1, 6, 0, 6)

     C/C++:

	  #include <scsl_fft.h>
	  float x[5][4], h[3], y[5][6];
	  int i, j;

	  for (j=0; j<5; j++) {
	     x[j][0] = j + 1.0f;
	     for (i=1; i<4; i++) {
		 x[j][i] = -1.0f - j;
	     }
	  }

									Page 6

CCORM1D(3S)							   CCORM1D(3S)

	  for (i=0; i<3; i++) {
	    h[i] = 1.0f/(i+1);
	  }
	  scorm1d((float *) x, 1, 4, 0, 4, 5, h, 1, 0, 3,
		  (float *) y, 1, 6, 0, 6);

     The output is

		      Y(:,0)   Y(:,1)	Y(:,2)	 Y(:,3)	  Y(:,4)
	  Y(0,:)      0.1667   0.3333	0.5000	 0.6667	  0.8333
	  Y(1,:)     -1.8333  -3.6667  -5.5000	-7.3333	 -9.1667
	  Y(2,:)     -1.5000  -3.0000  -4.5000	-6.0000	 -7.5000
	  Y(3,:)     -1.0000  -2.0000  -3.0000	-4.0000	 -5.0000
	  Y(4,:)      0.0000   0.0000	0.0000	 0.0000	  0.0000
	  Y(5,:)      0.0000   0.0000	0.0000	 0.0000	  0.0000

     Changing the values for ix0, ih0 and iy0 produces the following shifts in
     the output:

	  ix0 = +1    Y(:,0)   Y(:,1)	Y(:,2)	 Y(:,3)	  Y(:,4)
	  Y(0,:)      0.1667   0.3333	0.5000	 0.6667	  0.8333
	  Y(1,:)      0.1667   0.3333	0.5000	 0.6667	  0.8333
	  Y(2,:)     -1.8333  -3.6667  -5.5000	-7.3333	 -9.1667
	  Y(3,:)     -1.5000  -3.0000  -4.5000	-6.0000	 -7.5000
	  Y(4,:)     -1.0000  -2.0000  -3.0000	-4.0000	 -5.0000
	  Y(5,:)      0.0000   0.0000	0.0000	 0.0000	  0.0000

	  ih0 = +1    Y(:,0)   Y(:,1)	Y(:,2)	 Y(:,3)	  Y(:,4)
	  Y(0,:)     -1.8333  -3.6667  -5.5000	-7.3333	 -9.1667
	  Y(1,:)     -1.5000  -3.0000  -4.5000	-6.0000	 -7.5000
	  Y(2,:)     -1.0000  -2.0000  -3.0000	-4.0000	 -5.0000
	  Y(3,:)      0.0000   0.0000	0.0000	 0.0000	  0.0000
	  Y(4,:)      0.0000   0.0000	0.0000	 0.0000	  0.0000
	  Y(5,:)      0.0000   0.0000	0.0000	 0.0000	  0.0000

	  iy0 = -1    Y(:,0)   Y(:,1)	Y(:,2)	 Y(:,3)	  Y(:,4)
	  Y(0,:)      0.1667   0.3333	0.5000	 0.6667	  0.8333
	  Y(1,:)      0.1667   0.3333	0.5000	 0.6667	  0.8333
	  Y(2,:)     -1.8333  -3.6667  -5.5000	-7.3333	 -9.1667
	  Y(3,:)     -1.5000  -3.0000  -4.5000	-6.0000	 -7.5000
	  Y(4,:)     -1.0000  -2.0000  -3.0000	-4.0000	 -5.0000
	  Y(5,:)      0.0000   0.0000	0.0000	 0.0000	  0.0000

SEE ALSO
     CCOR1D(3S), INTRO_FFT(3S), INTRO_SCSL(3S)

									Page 7

[top]

List of man pages available for IRIX

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]
Tweet
Polarhome, production since 1999.
Member of Polarhome portal.
Based on Fawad Halim's script.
....................................................................
Vote for polarhome
Free Shell Accounts :: the biggest list on the net