dlopen man page on Oracle

Man page or keyword search:  
man Server   33470 pages
apropos Keyword Search (all sections)
Output format
Oracle logo
[printable version]

DLOPEN(3)		   Linux Programmer's Manual		     DLOPEN(3)

       dladdr, dlclose, dlerror, dlopen, dlsym, dlvsym - programming interface
       to dynamic linking loader

       #include <dlfcn.h>

       void *dlopen(const char *filename, int flag);

       char *dlerror(void);

       void *dlsym(void *handle, const char *symbol);

       int dlclose(void *handle);

       Link with -ldl.

       The four functions dlopen(), dlsym(),  dlclose(),  dlerror()  implement
       the interface to the dynamic linking loader.

       The  function  dlerror() returns a human readable string describing the
       most recent error that occurred from  dlopen(),	dlsym()	 or  dlclose()
       since  the  last	 call to dlerror().  It returns NULL if no errors have
       occurred since initialization or since it was last called.

       The function dlopen() loads the dynamic library file named by the null-
       terminated  string  filename  and  returns  an  opaque "handle" for the
       dynamic library.	 If filename is NULL, then the returned handle is  for
       the  main  program.   If	 filename  contains  a slash ("/"), then it is
       interpreted as a	 (relative  or	absolute)  pathname.   Otherwise,  the
       dynamic	linker	searches  for the library as follows (see ld.so(8) for
       further details):

       o   (ELF only) If the executable file for the calling program  contains
	   a  DT_RPATH	tag,  and  does not contain a DT_RUNPATH tag, then the
	   directories listed in the DT_RPATH tag are searched.

       o   If, at the time that the program was started, the environment vari‐
	   able	 LD_LIBRARY_PATH was defined to contain a colon-separated list
	   of directories, then these are searched.  (As  a  security  measure
	   this	 variable  is  ignored	for  set-user-ID and set-group-ID pro‐

       o   (ELF only) If the executable file for the calling program  contains
	   a  DT_RUNPATH  tag,	then  the  directories	listed in that tag are

       o   The cache file  /etc/ld.so.cache  (maintained  by  ldconfig(8))  is
	   checked to see whether it contains an entry for filename.

       o   The directories /lib and /usr/lib are searched (in that order).

       If  the	library has dependencies on other shared libraries, then these
       are also automatically loaded by the  dynamic  linker  using  the  same
       rules.  (This process may occur recursively, if those libraries in turn
       have dependencies, and so on.)

       One of the following two values must be included in flag:

	      Perform lazy binding.  Only resolve symbols  as  the  code  that
	      references them is executed.  If the symbol is never referenced,
	      then it is never resolved.  (Lazy binding is performed only  for
	      function	references; references to variables are always immedi‐
	      ately bound when the library is loaded.)

	      If  this	value  is  specified,  or  the	environment   variable
	      LD_BIND_NOW  is  set to a nonempty string, all undefined symbols
	      in the library are resolved before dlopen()  returns.   If  this
	      cannot be done, an error is returned.

       Zero or more of the following values may also be ORed in flag:

	      The  symbols  defined by this library will be made available for
	      symbol resolution of subsequently loaded libraries.

	      This is the converse of RTLD_GLOBAL, and the default if  neither
	      flag is specified.  Symbols defined in this library are not made
	      available	 to  resolve   references   in	 subsequently	loaded

       RTLD_NODELETE (since glibc 2.2)
	      Do  not  unload the library during dlclose().  Consequently, the
	      library's static variables are not reinitialized if the  library
	      is  reloaded  with  dlopen()  at a later time.  This flag is not
	      specified in POSIX.1-2001.

       RTLD_NOLOAD (since glibc 2.2)
	      Don't load the library.  This can be used to test if the library
	      is  already resident (dlopen() returns NULL if it is not, or the
	      library's handle if it is resident).  This flag can also be used
	      to  promote  the flags on a library that is already loaded.  For
	      example, a library that was previously  loaded  with  RTLD_LOCAL
	      can  be  reopened	 with RTLD_NOLOAD | RTLD_GLOBAL.  This flag is
	      not specified in POSIX.1-2001.

       RTLD_DEEPBIND (since glibc 2.3.4)
	      Place the lookup scope of the symbols in this library  ahead  of
	      the global scope.	 This means that a self-contained library will
	      use its own symbols in preference to  global  symbols  with  the
	      same  name contained in libraries that have already been loaded.
	      This flag is not specified in POSIX.1-2001.

       If filename is a NULL pointer, then the returned handle is for the main
       program.	 When given to dlsym(), this handle causes a search for a sym‐
       bol in the main program, followed by all	 shared	 libraries  loaded  at
       program	startup, and then all shared libraries loaded by dlopen() with
       the flag RTLD_GLOBAL.

       External references in the library are resolved using the libraries  in
       that  library's	dependency  list  and  any  other libraries previously
       opened with the RTLD_GLOBAL flag.  If the executable  was  linked  with
       the  flag  "-rdynamic" (or, synonymously, "--export-dynamic"), then the
       global symbols in the executable will also be used  to  resolve	refer‐
       ences in a dynamically loaded library.

       If the same library is loaded again with dlopen(), the same file handle
       is returned.  The dl library maintains  reference  counts  for  library
       handles,	 so  a	dynamic library is not deallocated until dlclose() has
       been called on it as many times as dlopen() has succeeded on  it.   The
       _init()	routine,  if  present,	is called only once.  But a subsequent
       call with RTLD_NOW may force symbol resolution for  a  library  earlier
       loaded with RTLD_LAZY.

       If dlopen() fails for any reason, it returns NULL.

       The  function dlsym() takes a "handle" of a dynamic library returned by
       dlopen() and the null-terminated symbol	name,  returning  the  address
       where  that  symbol is loaded into memory.  If the symbol is not found,
       in the specified library or any of the libraries	 that  were  automati‐
       cally  loaded by dlopen() when that library was loaded, dlsym() returns
       NULL.  (The search performed by dlsym() is breadth  first  through  the
       dependency  tree	 of  these  libraries.)	 Since the value of the symbol
       could actually be NULL (so that a NULL return  from  dlsym()  need  not
       indicate	 an  error),  the  correct way to test for an error is to call
       dlerror() to clear any old error conditions,  then  call	 dlsym(),  and
       then call dlerror() again, saving its return value into a variable, and
       check whether this saved value is not NULL.

       There are two special pseudo-handles, RTLD_DEFAULT and RTLD_NEXT.   The
       former  will  find the first occurrence of the desired symbol using the
       default library search order.  The latter will find the next occurrence
       of  a  function	in  the	 search order after the current library.  This
       allows one to provide a wrapper around a	 function  in  another	shared

       The  function  dlclose()	 decrements the reference count on the dynamic
       library handle handle.  If the reference count drops  to	 zero  and  no
       other  loaded  libraries use symbols in it, then the dynamic library is

       The function dlclose() returns 0 on success, and nonzero on error.

   The obsolete symbols _init() and _fini()
       The linker recognizes special symbols _init and _fini.	If  a  dynamic
       library	exports	 a  routine  named _init(), then that code is executed
       after the loading, before dlopen() returns.   If	 the  dynamic  library
       exports	a  routine  named  _fini(),  then  that routine is called just
       before the library is unloaded.	In case	 you  need  to	avoid  linking
       against	the system startup files, this can be done by using the gcc(1)
       -nostartfiles command-line option.

       Using these routines, or the gcc -nostartfiles or -nostdlib options, is
       not recommended.	 Their use may result in undesired behavior, since the
       constructor/destructor routines will not be  executed  (unless  special
       measures are taken).

       Instead, libraries should export routines using the __attribute__((con‐
       structor)) and __attribute__((destructor))  function  attributes.   See
       the  gcc info pages for information on these.  Constructor routines are
       executed before dlopen() returns, and destructor routines are  executed
       before dlclose() returns.

   Glibc extensions: dladdr() and dlvsym()
       Glibc adds two functions not described by POSIX, with prototypes

       #define _GNU_SOURCE	   /* See feature_test_macros(7) */
       #include <dlfcn.h>

       int dladdr(void *addr, Dl_info *info);

       void *dlvsym(void *handle, char *symbol, char *version);

       The  function  dladdr()	takes  a function pointer and tries to resolve
       name and file where it  is  located.   Information  is  stored  in  the
       Dl_info structure:

	   typedef struct {
	       const char *dli_fname;  /* Pathname of shared object that
					  contains address */
	       void	  *dli_fbase;  /* Address at which shared object
					  is loaded */
	       const char *dli_sname;  /* Name of nearest symbol with address
					  lower than addr */
	       void	  *dli_saddr;  /* Exact address of symbol named
					  in dli_sname */
	   } Dl_info;

       If no symbol matching addr could be found, then dli_sname and dli_saddr
       are set to NULL.

       dladdr() returns 0 on error, and nonzero on success.

       The function dlvsym(), provided by glibc since version  2.1,  does  the
       same as dlsym() but takes a version string as an additional argument.

       POSIX.1-2001 describes dlclose(), dlerror(), dlopen(), and dlsym().

       The  symbols  RTLD_DEFAULT  and RTLD_NEXT are defined by <dlfcn.h> only
       when _GNU_SOURCE was defined before including it.

       Since glibc 2.2.3, atexit(3) can be used to register  an	 exit  handler
       that is automatically called when a library is unloaded.

       The  dlopen  interface standard comes from SunOS.  That system also has
       dladdr(), but not dlvsym().

       Sometimes, the function pointers you pass to dladdr() may surprise you.
       On   some  architectures	 (notably  i386	 and  x86_64),	dli_fname  and
       dli_fbase may end up pointing back at the object from which you	called
       dladdr(),  even	if the function used as an argument should come from a
       dynamically linked library.

       The problem is that the function pointer will still be resolved at com‐
       pile  time,  but merely point to the plt (Procedure Linkage Table) sec‐
       tion of the original object (which dispatches the call after asking the
       dynamic	linker	to  resolve the symbol).  To work around this, you can
       try to compile the code to be position-independent: then, the  compiler
       cannot  prepare	the pointer at compile time anymore and today's gcc(1)
       will generate code that just loads the final symbol  address  from  the
       got (Global Offset Table) at run time before passing it to dladdr().

       Load the math library, and print the cosine of 2.0:

       #include <stdio.h>
       #include <stdlib.h>
       #include <dlfcn.h>

       main(int argc, char **argv)
	   void *handle;
	   double (*cosine)(double);
	   char *error;

	   handle = dlopen("libm.so", RTLD_LAZY);
	   if (!handle) {
	       fprintf(stderr, "%s\n", dlerror());

	   dlerror();	 /* Clear any existing error */

	   /* Writing: cosine = (double (*)(double)) dlsym(handle, "cos");
	      would seem more natural, but the C99 standard leaves
	      casting from "void *" to a function pointer undefined.
	      The assignment used below is the POSIX.1-2003 (Technical
	      Corrigendum 1) workaround; see the Rationale for the
	      POSIX specification of dlsym(). */

	   *(void **) (&cosine) = dlsym(handle, "cos");

	   if ((error = dlerror()) != NULL)  {
	       fprintf(stderr, "%s\n", error);

	   printf("%f\n", (*cosine)(2.0));

       If  this program were in a file named "foo.c", you would build the pro‐
       gram with the following command:

	   gcc -rdynamic -o foo foo.c -ldl

       Libraries exporting _init() and _fini() will want  to  be  compiled  as
       follows, using bar.c as the example name:

	   gcc -shared -nostartfiles -o bar bar.c

       ld(1), ldd(1), dl_iterate_phdr(3), rtld-audit(7), ld.so(8), ldconfig(8)

       ld.so info pages, gcc info pages, ld info pages

       This  page  is  part of release 3.53 of the Linux man-pages project.  A
       description of the project, and information about reporting  bugs,  can
       be found at http://www.kernel.org/doc/man-pages/.

Linux				  2008-12-06			     DLOPEN(3)

List of man pages available for Oracle

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]
Polarhome, production since 1999.
Member of Polarhome portal.
Based on Fawad Halim's script.
Vote for polarhome
Free Shell Accounts :: the biggest list on the net