pem man page on Tru64

Man page or keyword search:  
man Server   12896 pages
apropos Keyword Search (all sections)
Output format
Tru64 logo
[printable version]

pem(3)									pem(3)

NAME
       pem - PEM routines

SYNOPSIS
       #include <openssl/pem.h>

       EVP_PKEY *PEM_read_bio_PrivateKey(
	       BIO *bp,
	       EVP_PKEY **x,
	       pem_password_cb *cb,
	       void *u ); EVP_PKEY *PEM_read_PrivateKey(
	       FILE *fp,
	       EVP_PKEY **x,
	       pem_password_cb *cb,
	       void *u ); int PEM_write_bio_PrivateKey(
	       BIO *bp,
	       EVP_PKEY *x,
	       const EVP_CIPHER *enc,
	       unsigned char *kstr,
	       int klen,
	       pem_password_cb *cb,
	       void *u ); int PEM_write_PrivateKey(
	       FILE *fp,
	       EVP_PKEY *x,
	       const EVP_CIPHER *enc,
	       unsigned char *kstr,
	       int klen,
	       pem_password_cb *cb,
	       void *u ); int PEM_write_bio_PKCS8PrivateKey(
	       BIO *bp,
	       EVP_PKEY *x,
	       const EVP_CIPHER *enc,
	       char *kstr,
	       int klen,
	       pem_password_cb *cb,
	       void *u ); int PEM_write_PKCS8PrivateKey(
	       FILE *fp,
	       EVP_PKEY *x,
	       const EVP_CIPHER *enc,
	       char *kstr,
	       int klen,
	       pem_password_cb *cb,
	       void *u ); int PEM_write_bio_PKCS8PrivateKey_nid(
	       BIO *bp,
	       EVP_PKEY *x,
	       int nid,
	       char *kstr,
	       int klen,
	       pem_password_cb *cb,
	       void *u ); int PEM_write_PKCS8PrivateKey_nid(
	       FILE *fp,
	       EVP_PKEY *x,
	       int nid,
	       char *kstr,
	       int klen,
	       pem_password_cb *cb,
	       void *u ); EVP_PKEY *PEM_read_bio_PUBKEY(
	       BIO *bp,
	       EVP_PKEY **x,
	       pem_password_cb *cb,
	       void *u ); EVP_PKEY *PEM_read_PUBKEY(
	       FILE *fp,
	       EVP_PKEY **x,
	       pem_password_cb *cb,
	       void *u ); int PEM_write_bio_PUBKEY(
	       BIO *bp,
	       EVP_PKEY *x ); int PEM_write_PUBKEY(
	       FILE *fp,
	       EVP_PKEY *x ); RSA *PEM_read_bio_RSAPrivateKey(
	       BIO *bp,
	       RSA **x,
	       pem_password_cb *cb,
	       void *u ); RSA *PEM_read_RSAPrivateKey(
	       FILE *fp,
	       RSA **x,
	       pem_password_cb *cb,
	       void *u ); int PEM_write_bio_RSAPrivateKey(
	       BIO *bp,
	       RSA *x,
	       const EVP_CIPHER *enc,
	       int klen,
	       unsigned char *kstr,
	       pem_password_cb *cb,
	       void *u ); int PEM_write_RSAPrivateKey(
	       FILE *fp,
	       RSA *x,
	       const EVP_CIPHER *enc,
	       unsigned char *kstr,
	       int klen,
	       pem_password_cb *cb,
	       void *u ); RSA *PEM_read_bio_RSAPublicKey(
	       BIO *bp,
	       RSA **x,
	       pem_password_cb *cb,
	       void *u ); RSA *PEM_read_RSAPublicKey(
	       FILE *fp,
	       RSA **x,
	       pem_password_cb *cb,
	       void *u ); int PEM_write_bio_RSAPublicKey(
	       BIO *bp,
	       RSA *x ); int PEM_write_RSAPublicKey(
	       FILE *fp,
	       RSA *x ); RSA *PEM_read_bio_RSA_PUBKEY(
	       BIO *bp,
	       RSA **x,
	       pem_password_cb *cb,
	       void *u ); RSA *PEM_read_RSA_PUBKEY(
	       FILE *fp,
	       RSA **x,
	       pem_password_cb *cb,
	       void *u ); int PEM_write_bio_RSA_PUBKEY(
	       BIO *bp,
	       RSA *x ); int PEM_write_RSAPublicKey(
	       FILE *fp,
	       RSA *x ); RSA *PEM_read_bio_RSA_PUBKEY(
	       BIO *bp,
	       RSA **x,
	       pem_password_cb *cb,
	       void *u ); RSA *PEM_read_RSA_PUBKEY(
	       FILE *fp,
	       RSA **x,
	       pem_password_cb *cb,
	       void *u ); int PEM_write_bio_RSA_PUBKEY(
	       BIO *bp,
	       RSA *x ); int PEM_write_RSA_PUBKEY(
	       FILE *fp,
	       RSA *x ); DSA *PEM_read_bio_DSAPrivateKey(
	       BIO *bp,
	       DSA **x,
	       pem_password_cb *cb,
	       void *u ); DSA *PEM_read_DSAPrivateKey(
	       FILE *fp,
	       DSA **x,
	       pem_password_cb *cb,
	       void *u ); int PEM_write_bio_DSAPrivateKey(
	       BIO *bp,
	       DSA *x, const EVP_CIPHER *enc,
	       unsigned char *kstr,
	       int klen,
	       pem_password_cb *cb,
	       void *u ); int PEM_write_DSAPrivateKey(
	       FILE *fp,
	       DSA *x,
	       const EVP_CIPHER *enc,
	       unsigned char *kstr,
	       int klen,
	       pem_password_cb *cb,
	       void *u ); DSA *PEM_read_bio_DSA_PUBKEY(
	       BIO *bp,
	       DSA **x,
	       pem_password_cb *cb,
	       void *u ); DSA *PEM_read_DSA_PUBKEY(
	       FILE *fp,
	       DSA **x,
	       pem_password_cb *cb,
	       void *u ); int PEM_write_bio_DSA_PUBKEY(
	       BIO *bp,
	       DSA *x ); int PEM_write_DSA_PUBKEY(
	       FILE *fp,
	       DSA *x ); DSA *PEM_read_bio_DSAparams(
	       BIO *bp,
	       DSA **x,
	       pem_password_cb *cb,
	       void *u ); DSA *PEM_read_DSAparams(
	       FILE *fp,
	       DSA **x,
	       pem_password_cb *cb,
	       void *u ); int PEM_write_bio_DSAparams(
	       BIO *bp,
	       DSA *x ); int PEM_write_DSAparams(
	       FILE *fp,
	       DSA *x ); DH *PEM_read_bio_DHparams(
	       BIO *bp,
	       DH **x,
	       pem_password_cb *cb,
	       void *u ); DH *PEM_read_DHparams(
	       FILE *fp,
	       DH **x,
	       pem_password_cb *cb,
	       void *u ); int PEM_write_bio_DHparams(
	       BIO *bp,
	       DH *x ); int PEM_write_DHparams(
	       FILE *fp,
	       DH *x ); X509_CRL *PEM_read_bio_X509_CRL(
	       BIO *bp,
	       X509_CRL **x,
	       pem_password_cb *cb,
	       void *u ); X509_CRL *PEM_read_X509_CRL(
	       FILE *fp,
	       X509_CRL **x,
	       pem_password_cb *cb,
	       void *u ); int PEM_write_bio_X509_CRL(
	       BIO *bp,
	       X509_CRL *x ); int PEM_write_X509_CRL(
	       FILE *fp,
	       X509_CRL *x ); PKCS7 *PEM_read_bio_PKCS7(
	       BIO *bp,
	       PKCS7 **x,
	       pem_password_cb *cb,
	       void *u ); PKCS7 *PEM_read_PKCS7(
	       ILE *fp,
	       PKCS7 **x,
	       pem_password_cb *cb,
	       void *u ); int PEM_write_bio_PKCS7(
	       BIO *bp,
	       PKCS7 *x ); int PEM_write_PKCS7(
	       FILE *fp,
	       PKCS7	*x    );   NETSCAPE_CERT_SEQUENCE   *PEM_read_bio_NET‐
       SCAPE_CERT_SEQUENCE(
	       BIO *bp,
	       NETSCAPE_CERT_SEQUENCE **x,
	       pem_password_cb *cb,
	       void    *u     );     NETSCAPE_CERT_SEQUENCE	*PEM_read_NET‐
       SCAPE_CERT_SEQUENCE(
	       FILE *fp,
	       NETSCAPE_CERT_SEQUENCE **x,
	       pem_password_cb *cb,
	       void *u ); int PEM_write_bio_NETSCAPE_CERT_SEQUENCE(
	       BIO *bp,
	       NETSCAPE_CERT_SEQUENCE	  *x	 );	int	PEM_write_NET‐
       SCAPE_CERT_SEQUENCE(
	       FILE *fp,
	       NETSCAPE_CERT_SEQUENCE *x );

DESCRIPTION
       The pem() functions read or write structures in	PEM  format.  In  this
       sense  PEM  format  is  simply base64 encoded data surrounded by header
       lines.

       Each operation has four functions associated with it. For  clarity  the
       term  foobar  functions	will  be  used	to  collectively  refer to the
       PEM_read_bio_foobar(), PEM_read_foobar(),  PEM_write_bio_foobar(),  and
       PEM_write_foobar() functions.

       The  PrivateKey	functions  read	 or  write a private key in PEM format
       using an EVP_PKEY structure. The write routines use traditional private
       key format and can handle both RSA and DSA private keys. The read func‐
       tions can transparently handle PKCS#8 format encrypted and  unencrypted
       keys too.

       The   PEM_write_bio_PKCS8PrivateKey()  and  PEM_write_PKCS8PrivateKey()
       functions write a private  key  in  an  EVP_PKEY	 structure  in	PKCS#8
       EncryptedPrivateKeyInfo format using PKCS#5 v2.0 password based encryp‐
       tion algorithms. The cipher argument specifies the encryption  algoritm
       to  use. Unlike all other PEM routines the encryption is applied at the
       PKCS#8 level and not in the PEM headers. If  cipher  is	NULL  then  no
       encryption  is  used  and  a  PKCS#8  PrivateKeyInfo  structure is used
       instead.

       The   PEM_write_bio_PKCS8PrivateKey_nid()    and	   PEM_write_PKCS8Pri‐
       vateKey_nid()  functions	 also  write  out  a  private  key as a PKCS#8
       EncryptedPrivateKeyInfo however it uses PKCS#5 v1.5 or PKCS#12  encryp‐
       tion  algorithms	 instead. The algorithm to use is specified in the nid
       parameter and should be the NID of the corresponding OBJECT  IDENTIFIER
       (see Notes section).

       The  PUBKEY functions process a public key using an EVP_PKEY structure.
       The public key is encoded as a SubjectPublicKeyInfo structure.

       The RSAPrivateKey functions process an RSA private  key	using  an  RSA
       structure.  It handles the same formats as the PrivateKey functions but
       an error occurs if the private key is not RSA.

       The RSAPublicKey functions process an  RSA  public  key	using  an  RSA
       structure.   The	 public	 key  is  encoded  using a PKCS#1 RSAPublicKey
       structure.

       The RSA_PUBKEY functions also process an RSA public key	using  an  RSA
       structure.  However the public key is encoded using a SubjectPublicKey‐
       Info structure and an error occurs if the public key is not RSA.

       The DSAPrivateKey functions process a  DSA  private  key	 using	a  DSA
       structure.  It handles the same formats as the PrivateKey functions but
       an error occurs if the private key is not DSA.

       The DSA_PUBKEY functions process a DSA public key using	a  DSA	struc‐
       ture.  The public key is encoded using a SubjectPublicKeyInfo structure
       and an error occurs if the public key is not DSA.

       The DSAparams functions process DSA parameters using a  DSA  structure.
       The parameters are encoded using a foobar structure.

       The  DHparams functions process DH parameters using a DH structure. The
       parameters are encoded using a PKCS#3 DHparameter structure.

       The X509 functions process an X509 certificate using an X509 structure.
       They  will  also	 process a trusted X509 certificate but any trust set‐
       tings are discarded.

       The X509_AUX functions process a trusted X509 certificate using an X509
       structure.

       The  X509_REQ  and X509_REQ_NEW functions process a PKCS#10 certificate
       request using an X509_REQ structure. The X509_REQ write	functions  use
       CERTIFICATE  REQUEST  in	 the header whereas the X509_REQ_NEW functions
       use NEW CERTIFICATE REQUEST (as required by  some  CAs).	 The  X509_REQ
       read  functions	will  handle  either form so there are no X509_REQ_NEW
       read functions.

       The X509_CRL functions process an X509 CRL using an X509_CRL structure.

       The PKCS7 functions process a PKCS#7 ContentInfo using a	 PKCS7	struc‐
       ture.

       The  NETSCAPE_CERT_SEQUENCE  functions  process	a Netscape Certificate
       Sequence using a NETSCAPE_CERT_SEQUENCE structure.

PEM FUNCTION ARGUMENTS
       The PEM functions have many common arguments.

       The bp IO parameter (if present) specifies the  BIO  to	read  from  or
       write to.

       The  fp	FILE parameter (if present) specifies the FILE pointer to read
       from or write to.

       The PEM read functions all take an argument TYPE **x and return a  TYPE
       *  pointer. Where TYPE is whatever structure the function uses. If x is
       NULL then the parameter is ignored. If x is not NULL  but  *x  is  NULL
       then  the structure returned will be written to *x. If neither x nor *x
       is NULL then an attempt is made to reuse the structure at *x (see NOTES
       and  EXAMPLES  sections).  Irrespective of the value of x, a pointer to
       the structure is always returned (or NULL if an error occurred).

       The PEM functions which write private keys take an enc parameter	 which
       specifies  the  encryption  algorithm to use. Encryption is done at the
       PEM level. If this parameter is set to NULL then	 the  private  key  is
       written in unencrypted form.

       The  cb	argument  is  the  callback  to use when querying for the pass
       phrase used for encrypted PEM structures (normally only private keys).

       For the PEM write routines if the kstr parameter is not NULL then  klen
       bytes at kstr are used as the passphrase and cb is ignored.

       If the cb parameter is set to NULL and the u parameter is not NULL then
       the u parameter is interpreted as a null terminated string  to  use  as
       the  passphrase.	 If  both  cb and u are NULL then the default callback
       routine is used which will typically prompt for the passphrase  on  the
       current terminal with echoing turned off.

       The default passphrase callback is sometimes inappropriate (for example
       in a GUI application) so an alternative can be supplied.	 The  callback
       routine has the following form: int cb(char *buf, int size, int rwflag,
       void *u); buf is the buffer to write the passphrase  to.	 Size  is  the
       maximum	length	of the passphrase (i.e. the size of buf).  rwflag is a
       flag which is set to 0 when reading and 1 when writing.	A typical rou‐
       tine will ask the user to verify the passphrase (for example by prompt‐
       ing for it twice) if rwflag is 1. The u parameter has the same value as
       the  u parameter passed to the PEM routine. It allows arbitrary data to
       be passed to the callback by the application  (for  example,  a	window
       handle  in  a  GUI application). The callback must return the number of
       characters in the passphrase or 0 if an error occurred.

NOTES
       The PEM read routines in some versions of OpenSSL  will	not  correctly
       reuse an existing structure. Therefore the following may not work where
       x already contains a valid certificate: PEM_read_bio(bp, &x, 0, NULL);

       However, the following  is guaranteed to work:

       X509_free(x); x =3D PEM_read_bio(bp, NULL, 0, NULL);

       The old PrivateKey write routines are retained for  compatibility.  New
       applications	should	   write     private	 keys	  using	   the
       PEM_write_bio_PKCS8PrivateKey() or PEM_write_PKCS8PrivateKey() routines
       because they are more  secure, unless compatibility with older versions
       of OpenSSL is important. (They use an iteration count of 2048,  whereas
       the  traditional	 routines  use a count of 1.) The PrivateKey read rou‐
       tines can be used in all applications because they handle  all  formats
       transparently.  A  frequent  cause of problems is attempting to use the
       PEM routines in the following manner:

       X509 *x; PEM_read_bio_X509(bp, &x, 0, NULL);

       This is a bug because an attempt will be made to reuse the  data	 at  x
       which is an uninitialized pointer.

RETURN VALUES
       The read routines return either a pointer to the structure read or NULL
       is an error occurred.

       The write routines return 1 for success or 0 for failure.

EXAMPLES
       Although the PEM routines take several arguments in almost all applica‐
       tions most of them are set to 0 or NULL.

       Read a certificate in PEM format from a BIO:

       X509 *x; x = PEM_read_bio(bp, NULL, 0, NULL); if (x == NULL)
	      {

	      }

       Alternative method:

       X509 *x = NULL; if (!PEM_read_bio_X509(bp, &x, 0, NULL))
	      {

	      }

       Write a certificate to a BIO:

       if (!PEM_write_bio_X509(bp, x))
	      {

	      }

       Write an unencrypted private key to a FILE pointer:

       if (!PEM_write_PrivateKey(fp, key, NULL, NULL, 0, 0, NULL))
	      {

	      }

       Write  a	 private  key (using traditional format) to a BIO using triple
       DES encryption, the pass phrase is prompted for:

       if (!PEM_write_bio_PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0,  0,
       NULL))
	      {

	      }

       Write  a	 private  key  (using PKCS#8 format) to a BIO using triple DES
       encryption, using the pass phrase ``hello'':

       if (!PEM_write_bio_PKCS8PrivateKey(bp, key,  EVP_des_ede3_cbc(),	 NULL,
       0, 0, "hello"))
	      {

	      }

       Read a private key from a BIO using the pass phrase ``hello'':

       key = PEM_read_bio_PrivateKey(bp, NULL, 0, "hello"); if (key == NULL)
	       {

	       }

       Read a private key from a BIO using a pass phrase callback:

       key  = PEM_read_bio_PrivateKey(bp, NULL, pass_cb, "My Private Key"); if
       (key == NULL)
	       {

	       }

       Skeleton pass phrase callback:

       int pass_cb(char *buf, int size, int rwflag, void *u);
	      {
	      int len;
	      char *tmp;

	      printf("Enter pass phrase for \"%s\"\n", u);

	      tmp = "hello";
	      len = strlen(tmp);

	      if (len <= 0) return 0;

	      if (len > size) len = size;
	      memcpy(buf, tmp, len);
	      return len;
	      }

									pem(3)
[top]
                             _         _         _ 
                            | |       | |       | |     
                            | |       | |       | |     
                         __ | | __ __ | | __ __ | | __  
                         \ \| |/ / \ \| |/ / \ \| |/ /  
                          \ \ / /   \ \ / /   \ \ / /   
                           \   /     \   /     \   /    
                            \_/       \_/       \_/ 
More information is available in HTML format for server Tru64

List of man pages available for Tru64

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]
Tweet
Polarhome, production since 1999.
Member of Polarhome portal.
Based on Fawad Halim's script.
....................................................................
Vote for polarhome
Free Shell Accounts :: the biggest list on the net