perlfaq7 man page on FreeBSD

Man page or keyword search:  
man Server   9747 pages
apropos Keyword Search (all sections)
Output format
FreeBSD logo
[printable version]

PERLFAQ7(1)	       Perl Programmers Reference Guide		   PERLFAQ7(1)

NAME
       perlfaq7 - General Perl Language Issues

DESCRIPTION
       This section deals with general Perl language issues that don't clearly
       fit into any of the other sections.

   Can I get a BNF/yacc/RE for the Perl language?
       There is no BNF, but you can paw your way through the yacc grammar in
       perly.y in the source distribution if you're particularly brave.	 The
       grammar relies on very smart tokenizing code, so be prepared to venture
       into toke.c as well.

       In the words of Chaim Frenkel: "Perl's grammar can not be reduced to
       BNF.  The work of parsing perl is distributed between yacc, the lexer,
       smoke and mirrors."

   What are all these $@%&* punctuation signs, and how do I know when to use
       them?
       They are type specifiers, as detailed in perldata:

	       $ for scalar values (number, string or reference)
	       @ for arrays
	       % for hashes (associative arrays)
	       & for subroutines (aka functions, procedures, methods)
	       * for all types of that symbol name.  In version 4 you used them like
		 pointers, but in modern perls you can just use references.

       There are couple of other symbols that you're likely to encounter that
       aren't really type specifiers:

	       <> are used for inputting a record from a filehandle.
	       \  takes a reference to something.

       Note that <FILE> is neither the type specifier for files nor the name
       of the handle.  It is the "<>" operator applied to the handle FILE.  It
       reads one line (well, record--see "$/" in perlvar) from the handle FILE
       in scalar context, or all lines in list context.	 When performing open,
       close, or any other operation besides "<>" on files, or even when
       talking about the handle, do not use the brackets.  These are correct:
       "eof(FH)", "seek(FH, 0, 2)" and "copying from STDIN to FILE".

   Do I always/never have to quote my strings or use semicolons and commas?
       Normally, a bareword doesn't need to be quoted, but in most cases
       probably should be (and must be under "use strict").  But a hash key
       consisting of a simple word (that isn't the name of a defined
       subroutine) and the left-hand operand to the "=>" operator both count
       as though they were quoted:

	       This		       is like this
	       ------------	       ---------------
	       $foo{line}	       $foo{'line'}
	       bar => stuff	       'bar' => stuff

       The final semicolon in a block is optional, as is the final comma in a
       list.  Good style (see perlstyle) says to put them in except for one-
       liners:

	       if ($whoops) { exit 1 }
	       @nums = (1, 2, 3);

	       if ($whoops) {
		       exit 1;
	       }

	       @lines = (
	       "There Beren came from mountains cold",
	       "And lost he wandered under leaves",
	       );

   How do I skip some return values?
       One way is to treat the return values as a list and index into it:

	       $dir = (getpwnam($user))[7];

       Another way is to use undef as an element on the left-hand-side:

	       ($dev, $ino, undef, undef, $uid, $gid) = stat($file);

       You can also use a list slice to select only the elements that you
       need:

	       ($dev, $ino, $uid, $gid) = ( stat($file) )[0,1,4,5];

   How do I temporarily block warnings?
       If you are running Perl 5.6.0 or better, the "use warnings" pragma
       allows fine control of what warning are produced.  See perllexwarn for
       more details.

	       {
	       no warnings;	     # temporarily turn off warnings
	       $a = $b + $c;	     # I know these might be undef
	       }

       Additionally, you can enable and disable categories of warnings.	 You
       turn off the categories you want to ignore and you can still get other
       categories of warnings.	See perllexwarn for the complete details,
       including the category names and hierarchy.

	       {
	       no warnings 'uninitialized';
	       $a = $b + $c;
	       }

       If you have an older version of Perl, the $^W variable (documented in
       perlvar) controls runtime warnings for a block:

	       {
	       local $^W = 0;	     # temporarily turn off warnings
	       $a = $b + $c;	     # I know these might be undef
	       }

       Note that like all the punctuation variables, you cannot currently use
       my() on $^W, only local().

   What's an extension?
       An extension is a way of calling compiled C code from Perl.  Reading
       perlxstut is a good place to learn more about extensions.

   Why do Perl operators have different precedence than C operators?
       Actually, they don't.  All C operators that Perl copies have the same
       precedence in Perl as they do in C.  The problem is with operators that
       C doesn't have, especially functions that give a list context to
       everything on their right, eg. print, chmod, exec, and so on.  Such
       functions are called "list operators" and appear as such in the
       precedence table in perlop.

       A common mistake is to write:

	       unlink $file || die "snafu";

       This gets interpreted as:

	       unlink ($file || die "snafu");

       To avoid this problem, either put in extra parentheses or use the super
       low precedence "or" operator:

	       (unlink $file) || die "snafu";
	       unlink $file or die "snafu";

       The "English" operators ("and", "or", "xor", and "not") deliberately
       have precedence lower than that of list operators for just such
       situations as the one above.

       Another operator with surprising precedence is exponentiation.  It
       binds more tightly even than unary minus, making "-2**2" produce a
       negative not a positive four.  It is also right-associating, meaning
       that "2**3**2" is two raised to the ninth power, not eight squared.

       Although it has the same precedence as in C, Perl's "?:" operator
       produces an lvalue.  This assigns $x to either $a or $b, depending on
       the trueness of $maybe:

	       ($maybe ? $a : $b) = $x;

   How do I declare/create a structure?
       In general, you don't "declare" a structure.  Just use a (probably
       anonymous) hash reference.  See perlref and perldsc for details.
       Here's an example:

	       $person = {};		       # new anonymous hash
	       $person->{AGE}  = 24;	       # set field AGE to 24
	       $person->{NAME} = "Nat";	       # set field NAME to "Nat"

       If you're looking for something a bit more rigorous, try perltoot.

   How do I create a module?
       (contributed by brian d foy)

       perlmod, perlmodlib, perlmodstyle explain modules in all the gory
       details. perlnewmod gives a brief overview of the process along with a
       couple of suggestions about style.

       If you need to include C code or C library interfaces in your module,
       you'll need h2xs.  h2xs will create the module distribution structure
       and the initial interface files you'll need.  perlxs and perlxstut
       explain the details.

       If you don't need to use C code, other tools such as
       ExtUtils::ModuleMaker and Module::Starter, can help you create a
       skeleton module distribution.

       You may also want to see Sam Tregar's "Writing Perl Modules for CPAN" (
       http://apress.com/book/bookDisplay.html?bID=14 ) which is the best
       hands-on guide to creating module distributions.

   How do I adopt or take over a module already on CPAN?
       (contributed by brian d foy)

       The full answer to this can be found at
       http://cpan.org/modules/04pause.html#takeover

       The easiest way to take over a module is to have the current module
       maintainer either make you a co-maintainer or transfer the module to
       you.

       If you can't reach the author for some reason (e.g. email bounces), the
       PAUSE admins at modules@perl.org can help. The PAUSE admins treat each
       case individually.

       ·   Get a login for the Perl Authors Upload Server (PAUSE) if you don't
	   already have one: http://pause.perl.org

       ·   Write to modules@perl.org explaining what you did to contact the
	   current maintainer. The PAUSE admins will also try to reach the
	   maintainer.

       ·   Post a public message in a heavily trafficked site announcing your
	   intention to take over the module.

       ·   Wait a bit. The PAUSE admins don't want to act too quickly in case
	   the current maintainer is on holiday. If there's no response to
	   private communication or the public post, a PAUSE admin can
	   transfer it to you.

   How do I create a class?
       (contributed by brian d foy)

       In Perl, a class is just a package, and methods are just subroutines.
       Perl doesn't get more formal than that and lets you set up the package
       just the way that you like it (that is, it doesn't set up anything for
       you).

       The Perl documentation has several tutorials that cover class creation,
       including perlboot (Barnyard Object Oriented Tutorial), perltoot (Tom's
       Object Oriented Tutorial), perlbot (Bag o' Object Tricks), and perlobj.

   How can I tell if a variable is tainted?
       You can use the tainted() function of the Scalar::Util module,
       available from CPAN (or included with Perl since release 5.8.0).	 See
       also "Laundering and Detecting Tainted Data" in perlsec.

   What's a closure?
       Closures are documented in perlref.

       Closure is a computer science term with a precise but hard-to-explain
       meaning. Usually, closures are implemented in Perl as anonymous
       subroutines with lasting references to lexical variables outside their
       own scopes. These lexicals magically refer to the variables that were
       around when the subroutine was defined (deep binding).

       Closures are most often used in programming languages where you can
       have the return value of a function be itself a function, as you can in
       Perl. Note that some languages provide anonymous functions but are not
       capable of providing proper closures: the Python language, for example.
       For more information on closures, check out any textbook on functional
       programming.  Scheme is a language that not only supports but
       encourages closures.

       Here's a classic non-closure function-generating function:

	       sub add_function_generator {
		       return sub { shift() + shift() };
		       }

	       $add_sub = add_function_generator();
	       $sum = $add_sub->(4,5);		      # $sum is 9 now.

       The anonymous subroutine returned by add_function_generator() isn't
       technically a closure because it refers to no lexicals outside its own
       scope.  Using a closure gives you a function template with some
       customization slots left out to be filled later.

       Contrast this with the following make_adder() function, in which the
       returned anonymous function contains a reference to a lexical variable
       outside the scope of that function itself.  Such a reference requires
       that Perl return a proper closure, thus locking in for all time the
       value that the lexical had when the function was created.

	       sub make_adder {
		       my $addpiece = shift;
		       return sub { shift() + $addpiece };
	       }

	       $f1 = make_adder(20);
	       $f2 = make_adder(555);

       Now "&$f1($n)" is always 20 plus whatever $n you pass in, whereas
       "&$f2($n)" is always 555 plus whatever $n you pass in.  The $addpiece
       in the closure sticks around.

       Closures are often used for less esoteric purposes.  For example, when
       you want to pass in a bit of code into a function:

	       my $line;
	       timeout( 30, sub { $line = <STDIN> } );

       If the code to execute had been passed in as a string, '$line =
       <STDIN>', there would have been no way for the hypothetical timeout()
       function to access the lexical variable $line back in its caller's
       scope.

       Another use for a closure is to make a variable private to a named
       subroutine, e.g. a counter that gets initialized at creation time of
       the sub and can only be modified from within the sub.  This is
       sometimes used with a BEGIN block in package files to make sure a
       variable doesn't get meddled with during the lifetime of the package:

	       BEGIN {
		       my $id = 0;
		       sub next_id { ++$id }
	       }

       This is discussed in more detail in perlsub, see the entry on
       Persistent Private Variables.

   What is variable suicide and how can I prevent it?
       This problem was fixed in perl 5.004_05, so preventing it means
       upgrading your version of perl. ;)

       Variable suicide is when you (temporarily or permanently) lose the
       value of a variable.  It is caused by scoping through my() and local()
       interacting with either closures or aliased foreach() iterator
       variables and subroutine arguments.  It used to be easy to
       inadvertently lose a variable's value this way, but now it's much
       harder.	Take this code:

	       my $f = 'foo';
	       sub T {
		       while ($i++ < 3) { my $f = $f; $f .= "bar"; print $f, "\n" }
		       }

	       T;
	       print "Finally $f\n";

       If you are experiencing variable suicide, that "my $f" in the
       subroutine doesn't pick up a fresh copy of the $f whose value is <foo>.
       The output shows that inside the subroutine the value of $f leaks
       through when it shouldn't, as in this output:

	       foobar
	       foobarbar
	       foobarbarbar
	       Finally foo

       The $f that has "bar" added to it three times should be a new $f "my
       $f" should create a new lexical variable each time through the loop.
       The expected output is:

	       foobar
	       foobar
	       foobar
	       Finally foo

   How can I pass/return a {Function, FileHandle, Array, Hash, Method, Regex}?
       With the exception of regexes, you need to pass references to these
       objects.	 See "Pass by Reference" in perlsub for this particular
       question, and perlref for information on references.

       See "Passing Regexes", later in perlfaq7, for information on passing
       regular expressions.

       Passing Variables and Functions
	   Regular variables and functions are quite easy to pass: just pass
	   in a reference to an existing or anonymous variable or function:

		   func( \$some_scalar );

		   func( \@some_array  );
		   func( [ 1 .. 10 ]   );

		   func( \%some_hash   );
		   func( { this => 10, that => 20 }   );

		   func( \&some_func   );
		   func( sub { $_[0] ** $_[1] }	  );

       Passing Filehandles
	   As of Perl 5.6, you can represent filehandles with scalar variables
	   which you treat as any other scalar.

		   open my $fh, $filename or die "Cannot open $filename! $!";
		   func( $fh );

		   sub func {
			   my $passed_fh = shift;

			   my $line = <$passed_fh>;
			   }

	   Before Perl 5.6, you had to use the *FH or "\*FH" notations.	 These
	   are "typeglobs"--see "Typeglobs and Filehandles" in perldata and
	   especially "Pass by Reference" in perlsub for more information.

       Passing Regexes
	   To pass regexes around, you'll need to be using a release of Perl
	   sufficiently recent as to support the "qr//" construct, pass around
	   strings and use an exception-trapping eval, or else be very, very
	   clever.

	   Here's an example of how to pass in a string to be regex compared
	   using "qr//":

		   sub compare($$) {
			   my ($val1, $regex) = @_;
			   my $retval = $val1 =~ /$regex/;
		   return $retval;
		   }
		   $match = compare("old McDonald", qr/d.*D/i);

	   Notice how "qr//" allows flags at the end.  That pattern was
	   compiled at compile time, although it was executed later.  The
	   nifty "qr//" notation wasn't introduced until the 5.005 release.
	   Before that, you had to approach this problem much less
	   intuitively.	 For example, here it is again if you don't have
	   "qr//":

		   sub compare($$) {
			   my ($val1, $regex) = @_;
			   my $retval = eval { $val1 =~ /$regex/ };
		   die if $@;
		   return $retval;
		   }

		   $match = compare("old McDonald", q/($?i)d.*D/);

	   Make sure you never say something like this:

		   return eval "\$val =~ /$regex/";   # WRONG

	   or someone can sneak shell escapes into the regex due to the double
	   interpolation of the eval and the double-quoted string.  For
	   example:

		   $pattern_of_evil = 'danger ${ system("rm -rf * &") } danger';

		   eval "\$string =~ /$pattern_of_evil/";

	   Those preferring to be very, very clever might see the O'Reilly
	   book, Mastering Regular Expressions, by Jeffrey Friedl.  Page 273's
	   Build_MatchMany_Function() is particularly interesting.  A complete
	   citation of this book is given in perlfaq2.

       Passing Methods
	   To pass an object method into a subroutine, you can do this:

		   call_a_lot(10, $some_obj, "methname")
		   sub call_a_lot {
			   my ($count, $widget, $trick) = @_;
			   for (my $i = 0; $i < $count; $i++) {
				   $widget->$trick();
			   }
		   }

	   Or, you can use a closure to bundle up the object, its method call,
	   and arguments:

		   my $whatnot =  sub { $some_obj->obfuscate(@args) };
		   func($whatnot);
		   sub func {
			   my $code = shift;
			   &$code();
		   }

	   You could also investigate the can() method in the UNIVERSAL class
	   (part of the standard perl distribution).

   How do I create a static variable?
       (contributed by brian d foy)

       In Perl 5.10, declare the variable with "state". The "state"
       declaration creates the lexical variable that persists between calls to
       the subroutine:

	       sub counter { state $count = 1; $counter++ }

       You can fake a static variable by using a lexical variable which goes
       out of scope. In this example, you define the subroutine "counter", and
       it uses the lexical variable $count. Since you wrap this in a BEGIN
       block, $count is defined at compile-time, but also goes out of scope at
       the end of the BEGIN block. The BEGIN block also ensures that the
       subroutine and the value it uses is defined at compile-time so the
       subroutine is ready to use just like any other subroutine, and you can
       put this code in the same place as other subroutines in the program
       text (i.e. at the end of the code, typically). The subroutine "counter"
       still has a reference to the data, and is the only way you can access
       the value (and each time you do, you increment the value).  The data in
       chunk of memory defined by $count is private to "counter".

	       BEGIN {
		       my $count = 1;
		       sub counter { $count++ }
	       }

	       my $start = counter();

	       .... # code that calls counter();

	       my $end = counter();

       In the previous example, you created a function-private variable
       because only one function remembered its reference. You could define
       multiple functions while the variable is in scope, and each function
       can share the "private" variable. It's not really "static" because you
       can access it outside the function while the lexical variable is in
       scope, and even create references to it. In this example,
       "increment_count" and "return_count" share the variable. One function
       adds to the value and the other simply returns the value.  They can
       both access $count, and since it has gone out of scope, there is no
       other way to access it.

	       BEGIN {
		       my $count = 1;
		       sub increment_count { $count++ }
		       sub return_count	   { $count }
	       }

       To declare a file-private variable, you still use a lexical variable.
       A file is also a scope, so a lexical variable defined in the file
       cannot be seen from any other file.

       See "Persistent Private Variables" in perlsub for more information.
       The discussion of closures in perlref may help you even though we did
       not use anonymous subroutines in this answer. See "Persistent Private
       Variables" in perlsub for details.

   What's the difference between dynamic and lexical (static) scoping?
       Between local() and my()?
       "local($x)" saves away the old value of the global variable $x and
       assigns a new value for the duration of the subroutine which is visible
       in other functions called from that subroutine.	This is done at run-
       time, so is called dynamic scoping.  local() always affects global
       variables, also called package variables or dynamic variables.

       "my($x)" creates a new variable that is only visible in the current
       subroutine.  This is done at compile-time, so it is called lexical or
       static scoping.	my() always affects private variables, also called
       lexical variables or (improperly) static(ly scoped) variables.

       For instance:

	       sub visible {
		       print "var has value $var\n";
		       }

	       sub dynamic {
		       local $var = 'local';   # new temporary value for the still-global
		       visible();	       #   variable called $var
		       }

	       sub lexical {
		       my $var = 'private';    # new private variable, $var
		       visible();	       # (invisible outside of sub scope)
		       }

	       $var = 'global';

	       visible();		       # prints global
	       dynamic();		       # prints local
	       lexical();		       # prints global

       Notice how at no point does the value "private" get printed.  That's
       because $var only has that value within the block of the lexical()
       function, and it is hidden from called subroutine.

       In summary, local() doesn't make what you think of as private, local
       variables.  It gives a global variable a temporary value.  my() is what
       you're looking for if you want private variables.

       See "Private Variables via my()" in perlsub and "Temporary Values via
       local()" in perlsub for excruciating details.

   How can I access a dynamic variable while a similarly named lexical is in
       scope?
       If you know your package, you can just mention it explicitly, as in
       $Some_Pack::var. Note that the notation $::var is not the dynamic $var
       in the current package, but rather the one in the "main" package, as
       though you had written $main::var.

	       use vars '$var';
	       local $var = "global";
	       my    $var = "lexical";

	       print "lexical is $var\n";
	       print "global  is $main::var\n";

       Alternatively you can use the compiler directive our() to bring a
       dynamic variable into the current lexical scope.

	       require 5.006; # our() did not exist before 5.6
	       use vars '$var';

	       local $var = "global";
	       my $var	  = "lexical";

	       print "lexical is $var\n";

	       {
		       our $var;
		       print "global  is $var\n";
	       }

   What's the difference between deep and shallow binding?
       In deep binding, lexical variables mentioned in anonymous subroutines
       are the same ones that were in scope when the subroutine was created.
       In shallow binding, they are whichever variables with the same names
       happen to be in scope when the subroutine is called.  Perl always uses
       deep binding of lexical variables (i.e., those created with my()).
       However, dynamic variables (aka global, local, or package variables)
       are effectively shallowly bound.	 Consider this just one more reason
       not to use them.	 See the answer to "What's a closure?".

   Why doesn't "my($foo) = <FILE>;" work right?
       "my()" and "local()" give list context to the right hand side of "=".
       The <FH> read operation, like so many of Perl's functions and
       operators, can tell which context it was called in and behaves
       appropriately.  In general, the scalar() function can help.  This
       function does nothing to the data itself (contrary to popular myth) but
       rather tells its argument to behave in whatever its scalar fashion is.
       If that function doesn't have a defined scalar behavior, this of course
       doesn't help you (such as with sort()).

       To enforce scalar context in this particular case, however, you need
       merely omit the parentheses:

	       local($foo) = <FILE>;	   # WRONG
	       local($foo) = scalar(<FILE>);   # ok
	       local $foo  = <FILE>;	   # right

       You should probably be using lexical variables anyway, although the
       issue is the same here:

	       my($foo) = <FILE>;      # WRONG
	       my $foo	= <FILE>;      # right

   How do I redefine a builtin function, operator, or method?
       Why do you want to do that? :-)

       If you want to override a predefined function, such as open(), then
       you'll have to import the new definition from a different module.  See
       "Overriding Built-in Functions" in perlsub.  There's also an example in
       "Class::Template" in perltoot.

       If you want to overload a Perl operator, such as "+" or "**", then
       you'll want to use the "use overload" pragma, documented in overload.

       If you're talking about obscuring method calls in parent classes, see
       "Overridden Methods" in perltoot.

   What's the difference between calling a function as &foo and foo()?
       (contributed by brian d foy)

       Calling a subroutine as &foo with no trailing parentheses ignores the
       prototype of "foo" and passes it the current value of the argumet list,
       @_. Here's an example; the "bar" subroutine calls &foo, which prints
       what its arguments list:

	       sub bar { &foo }

	       sub foo { print "Args in foo are: @_\n" }

	       bar( qw( a b c ) );

       When you call "bar" with arguments, you see that "foo" got the same @_:

	       Args in foo are: a b c

       Calling the subroutine with trailing parentheses, with or without
       arguments, does not use the current @_ and respects the subroutine
       prototype. Changing the example to put parentheses after the call to
       "foo" changes the program:

	       sub bar { &foo() }

	       sub foo { print "Args in foo are: @_\n" }

	       bar( qw( a b c ) );

       Now the output shows that "foo" doesn't get the @_ from its caller.

	       Args in foo are:

       The main use of the @_ pass-through feature is to write subroutines
       whose main job it is to call other subroutines for you. For further
       details, see perlsub.

   How do I create a switch or case statement?
       In Perl 5.10, use the "given-when" construct described in perlsyn:

	       use 5.010;

	       given ( $string ) {
		       when( 'Fred' )	     { say "I found Fred!" }
		       when( 'Barney' )	     { say "I found Barney!" }
		       when( /Bamm-?Bamm/ )  { say "I found Bamm-Bamm!" }
		       default		     { say "I don't recognize the name!" }
		       };

       If one wants to use pure Perl and to be compatible with Perl versions
       prior to 5.10, the general answer is to use "if-elsif-else":

	       for ($variable_to_test) {
		       if    (/pat1/)  { }     # do something
		       elsif (/pat2/)  { }     # do something else
		       elsif (/pat3/)  { }     # do something else
		       else	       { }     # default
		       }

       Here's a simple example of a switch based on pattern matching, lined up
       in a way to make it look more like a switch statement.  We'll do a
       multiway conditional based on the type of reference stored in
       $whatchamacallit:

	   SWITCH: for (ref $whatchamacallit) {

	       /^$/	       && die "not a reference";

	       /SCALAR/	       && do {
				       print_scalar($$ref);
				       last SWITCH;
			       };

	       /ARRAY/	       && do {
				       print_array(@$ref);
				       last SWITCH;
			       };

	       /HASH/	       && do {
				       print_hash(%$ref);
				       last SWITCH;
			       };

	       /CODE/	       && do {
				       warn "can't print function ref";
				       last SWITCH;
			       };

	       # DEFAULT

	       warn "User defined type skipped";

	   }

       See perlsyn for other examples in this style.

       Sometimes you should change the positions of the constant and the
       variable.  For example, let's say you wanted to test which of many
       answers you were given, but in a case-insensitive way that also allows
       abbreviations.  You can use the following technique if the strings all
       start with different characters or if you want to arrange the matches
       so that one takes precedence over another, as "SEND" has precedence
       over "STOP" here:

	       chomp($answer = <>);
	       if    ("SEND"  =~ /^\Q$answer/i) { print "Action is send\n"  }
	       elsif ("STOP"  =~ /^\Q$answer/i) { print "Action is stop\n"  }
	       elsif ("ABORT" =~ /^\Q$answer/i) { print "Action is abort\n" }
	       elsif ("LIST"  =~ /^\Q$answer/i) { print "Action is list\n"  }
	       elsif ("EDIT"  =~ /^\Q$answer/i) { print "Action is edit\n"  }

       A totally different approach is to create a hash of function
       references.

	       my %commands = (
		       "happy" => \&joy,
		       "sad",  => \&sullen,
		       "done"  => sub { die "See ya!" },
		       "mad"   => \&angry,
	       );

	       print "How are you? ";
	       chomp($string = <STDIN>);
	       if ($commands{$string}) {
		       $commands{$string}->();
	       } else {
		       print "No such command: $string\n";
	       }

       Starting from Perl 5.8, a source filter module, "Switch", can also be
       used to get switch and case. Its use is now discouraged, because it's
       not fully compatible with the native switch of Perl 5.10, and because,
       as it's implemented as a source filter, it doesn't always work as
       intended when complex syntax is involved.

   How can I catch accesses to undefined variables, functions, or methods?
       The AUTOLOAD method, discussed in "Autoloading" in perlsub and
       "AUTOLOAD: Proxy Methods" in perltoot, lets you capture calls to
       undefined functions and methods.

       When it comes to undefined variables that would trigger a warning under
       "use warnings", you can promote the warning to an error.

	       use warnings FATAL => qw(uninitialized);

   Why can't a method included in this same file be found?
       Some possible reasons: your inheritance is getting confused, you've
       misspelled the method name, or the object is of the wrong type.	Check
       out perltoot for details about any of the above cases.  You may also
       use "print ref($object)" to find out the class $object was blessed
       into.

       Another possible reason for problems is because you've used the
       indirect object syntax (eg, "find Guru "Samy"") on a class name before
       Perl has seen that such a package exists.  It's wisest to make sure
       your packages are all defined before you start using them, which will
       be taken care of if you use the "use" statement instead of "require".
       If not, make sure to use arrow notation (eg., "Guru->find("Samy")")
       instead.	 Object notation is explained in perlobj.

       Make sure to read about creating modules in perlmod and the perils of
       indirect objects in "Method Invocation" in perlobj.

   How can I find out my current or calling package?
       (contributed by brian d foy)

       To find the package you are currently in, use the special literal
       "__PACKAGE__", as documented in perldata. You can only use the special
       literals as separate tokens, so you can't interpolate them into strings
       like you can with variables:

	       my $current_package = __PACKAGE__;
	       print "I am in package $current_package\n";

       This is different from finding out the package an object is blessed
       into, which might not be the current package. For that, use "blessed"
       from "Scalar::Util", part of the Standard Library since Perl 5.8:

	       use Scalar::Util qw(blessed);
	       my $object_package = blessed( $object );

       Most of the time, you shouldn't care what package an object is blessed
       into, however, as long as it claims to inherit from that class:

	       my $is_right_class = eval { $object->isa( $package ) }; # true or false

       If you want to find the package calling your code, perhaps to give
       better diagnostics as "Carp" does, use the "caller" built-in:

	       sub foo {
		       my @args = ...;
		       my( $package, $filename, $line ) = caller;

		       print "I was called from package $package\n";
		       );

       By default, your program starts in package "main", so you should always
       be in some package unless someone uses the "package" built-in with no
       namespace. See the "package" entry in perlfunc for the details of empty
       packges.

   How can I comment out a large block of Perl code?
       (contributed by brian d foy)

       The quick-and-dirty way to comment out more than one line of Perl is to
       surround those lines with Pod directives. You have to put these
       directives at the beginning of the line and somewhere where Perl
       expects a new statement (so not in the middle of statements like the #
       comments). You end the comment with "=cut", ending the Pod section:

	       =pod

	       my $object = NotGonnaHappen->new();

	       ignored_sub();

	       $wont_be_assigned = 37;

	       =cut

       The quick-and-dirty method only works well when you don't plan to leave
       the commented code in the source. If a Pod parser comes along, you're
       multiline comment is going to show up in the Pod translation.  A better
       way hides it from Pod parsers as well.

       The "=begin" directive can mark a section for a particular purpose.  If
       the Pod parser doesn't want to handle it, it just ignores it. Label the
       comments with "comment". End the comment using "=end" with the same
       label. You still need the "=cut" to go back to Perl code from the Pod
       comment:

	       =begin comment

	       my $object = NotGonnaHappen->new();

	       ignored_sub();

	       $wont_be_assigned = 37;

	       =end comment

	       =cut

       For more information on Pod, check out perlpod and perlpodspec.

   How do I clear a package?
       Use this code, provided by Mark-Jason Dominus:

	       sub scrub_package {
		       no strict 'refs';
		       my $pack = shift;
		       die "Shouldn't delete main package"
			       if $pack eq "" || $pack eq "main";
		       my $stash = *{$pack . '::'}{HASH};
		       my $name;
		       foreach $name (keys %$stash) {
			       my $fullname = $pack . '::' . $name;
			       # Get rid of everything with that name.
			       undef $$fullname;
			       undef @$fullname;
			       undef %$fullname;
			       undef &$fullname;
			       undef *$fullname;
	       }
	       }

       Or, if you're using a recent release of Perl, you can just use the
       Symbol::delete_package() function instead.

   How can I use a variable as a variable name?
       Beginners often think they want to have a variable contain the name of
       a variable.

	       $fred	= 23;
	       $varname = "fred";
	       ++$$varname;	    # $fred now 24

       This works sometimes, but it is a very bad idea for two reasons.

       The first reason is that this technique only works on global variables.
       That means that if $fred is a lexical variable created with my() in the
       above example, the code wouldn't work at all: you'd accidentally access
       the global and skip right over the private lexical altogether.  Global
       variables are bad because they can easily collide accidentally and in
       general make for non-scalable and confusing code.

       Symbolic references are forbidden under the "use strict" pragma.	 They
       are not true references and consequently are not reference counted or
       garbage collected.

       The other reason why using a variable to hold the name of another
       variable is a bad idea is that the question often stems from a lack of
       understanding of Perl data structures, particularly hashes.  By using
       symbolic references, you are just using the package's symbol-table hash
       (like %main::) instead of a user-defined hash.  The solution is to use
       your own hash or a real reference instead.

	       $USER_VARS{"fred"} = 23;
	       $varname = "fred";
	       $USER_VARS{$varname}++;	# not $$varname++

       There we're using the %USER_VARS hash instead of symbolic references.
       Sometimes this comes up in reading strings from the user with variable
       references and wanting to expand them to the values of your perl
       program's variables.  This is also a bad idea because it conflates the
       program-addressable namespace and the user-addressable one.  Instead of
       reading a string and expanding it to the actual contents of your
       program's own variables:

	       $str = 'this has a $fred and $barney in it';
	       $str =~ s/(\$\w+)/$1/eeg;		 # need double eval

       it would be better to keep a hash around like %USER_VARS and have
       variable references actually refer to entries in that hash:

	       $str =~ s/\$(\w+)/$USER_VARS{$1}/g;   # no /e here at all

       That's faster, cleaner, and safer than the previous approach.  Of
       course, you don't need to use a dollar sign.  You could use your own
       scheme to make it less confusing, like bracketed percent symbols, etc.

	       $str = 'this has a %fred% and %barney% in it';
	       $str =~ s/%(\w+)%/$USER_VARS{$1}/g;   # no /e here at all

       Another reason that folks sometimes think they want a variable to
       contain the name of a variable is because they don't know how to build
       proper data structures using hashes.  For example, let's say they
       wanted two hashes in their program: %fred and %barney, and that they
       wanted to use another scalar variable to refer to those by name.

	       $name = "fred";
	       $$name{WIFE} = "wilma";	   # set %fred

	       $name = "barney";
	       $$name{WIFE} = "betty"; # set %barney

       This is still a symbolic reference, and is still saddled with the
       problems enumerated above.  It would be far better to write:

	       $folks{"fred"}{WIFE}   = "wilma";
	       $folks{"barney"}{WIFE} = "betty";

       And just use a multilevel hash to start with.

       The only times that you absolutely must use symbolic references are
       when you really must refer to the symbol table.	This may be because
       it's something that can't take a real reference to, such as a format
       name.  Doing so may also be important for method calls, since these
       always go through the symbol table for resolution.

       In those cases, you would turn off "strict 'refs'" temporarily so you
       can play around with the symbol table.  For example:

	       @colors = qw(red blue green yellow orange purple violet);
	       for my $name (@colors) {
		       no strict 'refs';  # renege for the block
		       *$name = sub { "<FONT COLOR='$name'>@_</FONT>" };
	       }

       All those functions (red(), blue(), green(), etc.) appear to be
       separate, but the real code in the closure actually was compiled only
       once.

       So, sometimes you might want to use symbolic references to directly
       manipulate the symbol table.  This doesn't matter for formats, handles,
       and subroutines, because they are always global--you can't use my() on
       them.  For scalars, arrays, and hashes, though--and usually for
       subroutines-- you probably only want to use hard references.

   What does "bad interpreter" mean?
       (contributed by brian d foy)

       The "bad interpreter" message comes from the shell, not perl.  The
       actual message may vary depending on your platform, shell, and locale
       settings.

       If you see "bad interpreter - no such file or directory", the first
       line in your perl script (the "shebang" line) does not contain the
       right path to perl (or any other program capable of running scripts).
       Sometimes this happens when you move the script from one machine to
       another and each machine has a different path to perl--/usr/bin/perl
       versus /usr/local/bin/perl for instance. It may also indicate that the
       source machine has CRLF line terminators and the destination machine
       has LF only: the shell tries to find /usr/bin/perl<CR>, but can't.

       If you see "bad interpreter: Permission denied", you need to make your
       script executable.

       In either case, you should still be able to run the scripts with perl
       explicitly:

	       % perl script.pl

       If you get a message like "perl: command not found", perl is not in
       your PATH, which might also mean that the location of perl is not where
       you expect it so you need to adjust your shebang line.

REVISION
       Revision: $Revision$

       Date: $Date$

       See perlfaq for source control details and availability.

AUTHOR AND COPYRIGHT
       Copyright (c) 1997-2009 Tom Christiansen, Nathan Torkington, and other
       authors as noted. All rights reserved.

       This documentation is free; you can redistribute it and/or modify it
       under the same terms as Perl itself.

       Irrespective of its distribution, all code examples in this file are
       hereby placed into the public domain.  You are permitted and encouraged
       to use this code in your own programs for fun or for profit as you see
       fit.  A simple comment in the code giving credit would be courteous but
       is not required.

perl v5.10.1			  2009-08-15			   PERLFAQ7(1)
[top]

List of man pages available for FreeBSD

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]
Tweet
Polarhome, production since 1999.
Member of Polarhome portal.
Based on Fawad Halim's script.
...................................................................
Vote for polarhome
Free Shell Accounts :: the biggest list on the net