terminfo man page on Oracle

Printed from http://www.polarhome.com/service/man/?qf=terminfo&af=0&tf=2&of=Oracle

terminfo(5)			 File Formats			   terminfo(5)

NAME
       terminfo - terminal capability data base

SYNOPSIS
       /usr/share/terminfo/*/*

DESCRIPTION
       Terminfo	 is  a data base describing terminals, used by screen-oriented
       programs such as nvi(1), rogue(1) and  libraries	 such  as  curses(3X).
       Terminfo describes terminals by giving a set of capabilities which they
       have, by specifying how to perform screen operations, and by specifying
       padding	requirements  and  initialization  sequences.	This describes
       ncurses version 5.9 (patch 20130511).

       Entries in terminfo consist of  a  sequence  of	`,'  separated	fields
       (embedded  commas  may be escaped with a backslash or notated as \054).
       White space after the `,' separator is ignored.	The  first  entry  for
       each  terminal  gives the names which are known for the terminal, sepa‐
       rated by `|' characters.	 The first  name  given	 is  the  most	common
       abbreviation  for  the  terminal,  the last name given should be a long
       name fully identifying the terminal, and all others are	understood  as
       synonyms	 for  the  terminal name.  All names but the last should be in
       lower case and contain no blanks; the last name may well contain	 upper
       case and blanks for readability.

       Lines beginning with a `#' in the first column are treated as comments.
       While comment lines are legal at any point, the output of captoinfo and
       infotocap  (aliases  for	 tic)  will  move  comments so they occur only
       between entries.

       Newlines and leading tabs may be used for formatting entries for	 read‐
       ability.	 These are removed from parsed entries.	 The infocmp -f option
       relies on this to format if-then-else expressions: the  result  can  be
       read by tic.

       Terminal	 names	(except	 for the last, verbose entry) should be chosen
       using the following conventions.	 The particular piece of hardware mak‐
       ing  up the terminal should have a root name, thus “hp2621”.  This name
       should not contain hyphens.  Modes that the hardware can be in, or user
       preferences,  should be indicated by appending a hyphen and a mode suf‐
       fix.  Thus, a vt100 in 132 column mode would be vt100-w.	 The following
       suffixes should be used where possible:

	    Suffix		    Meaning		      Example
	    -nn	     Number of lines on the screen	      aaa-60
	    -np	     Number of pages of memory		      c100-4p
	    -am	     With automargins (usually the default)   vt100-am
	    -m	     Mono mode; suppress color		      ansi-m
	    -mc	     Magic cookie; spaces when highlighting   wy30-mc
	    -na	     No arrow keys (leave them in local)      c100-na
	    -nam     Without automatic margins		      vt100-nam
	    -nl	     No status line			      att4415-nl
	    -ns	     No status line			      hp2626-ns
	    -rv	     Reverse video			      c100-rv
	    -s	     Enable status line			      vt100-s
	    -vb	     Use visible bell instead of beep	      wy370-vb
	    -w	     Wide mode (> 80 columns, usually 132)    vt100-w

       For more on terminal naming conventions, see the term(7) manual page.

   Predefined Capabilities
       The  following  is  a  complete table of the capabilities included in a
       terminfo description block and available to  terminfo-using  code.   In
       each line of the table,

       The  variable  is  the  name  by	 which the programmer (at the terminfo
       level) accesses the capability.

       The capname is the short name used in the text of the database, and  is
       used  by	 a  person updating the database.  Whenever possible, capnames
       are chosen to be the same as or similar to the ANSI X3.64-1979 standard
       (now  superseded	 by  ECMA-48,  which  uses  identical  or very similar
       names).	Semantics are also intended to match those of  the  specifica‐
       tion.

       The  termcap code is the old termcap capability name (some capabilities
       are new, and have names which termcap did not originate).

       Capability names have no hard length limit, but an informal limit of  5
       characters has been adopted to keep them short and to allow the tabs in
       the source file Caps to line up nicely.

       Finally, the description field attempts to convey the semantics of  the
       capability.  You may find some codes in the description field:

       (P)    indicates that padding may be specified

       #[1-9] in  the  description  field  indicates that the string is passed
	      through tparm with parms as given (#i).

       (P*)   indicates that padding may vary in proportion to the  number  of
	      lines affected

       (#i)   indicates the ith parameter.

       These are the boolean capabilities:

	       Variable		     Cap-	TCap	      Description
	       Booleans		     name	Code
       auto_left_margin		     bw		bw	  cub1 wraps from col‐
							  umn 0 to last column
       auto_right_margin	     am		am	  terminal has auto‐
							  matic margins
       back_color_erase		     bce	ut	  screen erased with
							  background color
       can_change		     ccc	cc	  terminal can re-
							  define existing col‐
							  ors
       ceol_standout_glitch	     xhp	xs	  standout not erased
							  by overwriting (hp)
       col_addr_glitch		     xhpa	YA	  only positive motion
							  for hpa/mhpa caps
       cpi_changes_res		     cpix	YF	  changing character
							  pitch changes reso‐
							  lution
       cr_cancels_micro_mode	     crxm	YB	  using cr turns off
							  micro mode
       dest_tabs_magic_smso	     xt		xt	  tabs destructive,
							  magic so char
							  (t1061)
       eat_newline_glitch	     xenl	xn	  newline ignored
							  after 80 cols (con‐
							  cept)
       erase_overstrike		     eo		eo	  can erase over‐
							  strikes with a blank
       generic_type		     gn		gn	  generic line type
       hard_copy		     hc		hc	  hardcopy terminal

       hard_cursor		     chts	HC	  cursor is hard to
							  see
       has_meta_key		     km		km	  Has a meta key
							  (i.e., sets 8th-bit)
       has_print_wheel		     daisy	YC	  printer needs opera‐
							  tor to change char‐
							  acter set
       has_status_line		     hs		hs	  has extra status
							  line
       hue_lightness_saturation	     hls	hl	  terminal uses only
							  HLS color notation
							  (Tektronix)
       insert_null_glitch	     in		in	  insert mode distin‐
							  guishes nulls
       lpi_changes_res		     lpix	YG	  changing line pitch
							  changes resolution
       memory_above		     da		da	  display may be
							  retained above the
							  screen
       memory_below		     db		db	  display may be
							  retained below the
							  screen
       move_insert_mode		     mir	mi	  safe to move while
							  in insert mode
       move_standout_mode	     msgr	ms	  safe to move while
							  in standout mode
       needs_xon_xoff		     nxon	nx	  padding will not
							  work, xon/xoff
							  required
       no_esc_ctlc		     xsb	xb	  beehive (f1=escape,
							  f2=ctrl C)
       no_pad_char		     npc	NP	  pad character does
							  not exist
       non_dest_scroll_region	     ndscr	ND	  scrolling region is
							  non-destructive
       non_rev_rmcup		     nrrmc	NR	  smcup does not
							  reverse rmcup
       over_strike		     os		os	  terminal can over‐
							  strike
       prtr_silent		     mc5i	5i	  printer will not
							  echo on screen
       row_addr_glitch		     xvpa	YD	  only positive motion
							  for vpa/mvpa caps
       semi_auto_right_margin	     sam	YE	  printing in last
							  column causes cr
       status_line_esc_ok	     eslok	es	  escape can be used
							  on the status line
       tilde_glitch		     hz		hz	  cannot print ~'s
							  (hazeltine)
       transparent_underline	     ul		ul	  underline character
							  overstrikes
       xon_xoff			     xon	xo	  terminal uses
							  xon/xoff handshaking

       These are the numeric capabilities:

	       Variable		     Cap-	TCap	      Description
		Numeric		     name	Code
       columns			     cols	co	  number of columns in
							  a line
       init_tabs		     it		it	  tabs initially every
							  # spaces
       label_height		     lh		lh	  rows in each label
       label_width		     lw		lw	  columns in each
							  label

       lines			     lines	li	  number of lines on
							  screen or page
       lines_of_memory		     lm		lm	  lines of memory if >
							  line. 0 means varies
       magic_cookie_glitch	     xmc	sg	  number of blank
							  characters left by
							  smso or rmso
       max_attributes		     ma		ma	  maximum combined
							  attributes terminal
							  can handle
       max_colors		     colors	Co	  maximum number of
							  colors on screen
       max_pairs		     pairs	pa	  maximum number of
							  color-pairs on the
							  screen
       maximum_windows		     wnum	MW	  maximum number of
							  defineable windows
       no_color_video		     ncv	NC	  video attributes
							  that cannot be used
							  with colors
       num_labels		     nlab	Nl	  number of labels on
							  screen
       padding_baud_rate	     pb		pb	  lowest baud rate
							  where padding needed
       virtual_terminal		     vt		vt	  virtual terminal
							  number (CB/unix)
       width_status_line	     wsl	ws	  number of columns in
							  status line

       The following numeric capabilities  are	present	 in  the  SVr4.0  term
       structure,  but	are  not yet documented in the man page.  They came in
       with SVr4's printer support.

	       Variable		     Cap-	TCap	      Description
		Numeric		     name	Code
       bit_image_entwining	     bitwin	Yo	  number of passes for
							  each bit-image row
       bit_image_type		     bitype	Yp	  type of bit-image
							  device
       buffer_capacity		     bufsz	Ya	  numbers of bytes
							  buffered before
							  printing
       buttons			     btns	BT	  number of buttons on
							  mouse
       dot_horz_spacing		     spinh	Yc	  spacing of dots hor‐
							  izontally in dots
							  per inch
       dot_vert_spacing		     spinv	Yb	  spacing of pins ver‐
							  tically in pins per
							  inch
       max_micro_address	     maddr	Yd	  maximum value in
							  micro_..._address
       max_micro_jump		     mjump	Ye	  maximum value in
							  parm_..._micro
       micro_col_size		     mcs	Yf	  character step size
							  when in micro mode
       micro_line_size		     mls	Yg	  line step size when
							  in micro mode
       number_of_pins		     npins	Yh	  numbers of pins in
							  print-head
       output_res_char		     orc	Yi	  horizontal resolu‐
							  tion in units per
							  line

       output_res_horz_inch	     orhi	Yk	  horizontal resolu‐
							  tion in units per
							  inch
       output_res_line		     orl	Yj	  vertical resolution
							  in units per line
       output_res_vert_inch	     orvi	Yl	  vertical resolution
							  in units per inch
       print_rate		     cps	Ym	  print rate in char‐
							  acters per second
       wide_char_size		     widcs	Yn	  character step size
							  when in double wide
							  mode

       These are the string capabilities:

	       Variable		     Cap-	TCap	      Description
		String		     name	Code
       acs_chars		     acsc	ac	  graphics charset
							  pairs, based on
							  vt100
       back_tab			     cbt	bt	  back tab (P)
       bell			     bel	bl	  audible signal
							  (bell) (P)
       carriage_return		     cr		cr	  carriage return (P*)
							  (P*)
       change_char_pitch	     cpi	ZA	  Change number of
							  characters per inch
							  to #1
       change_line_pitch	     lpi	ZB	  Change number of
							  lines per inch to #1
       change_res_horz		     chr	ZC	  Change horizontal
							  resolution to #1
       change_res_vert		     cvr	ZD	  Change vertical res‐
							  olution to #1
       change_scroll_region	     csr	cs	  change region to
							  line #1 to line #2
							  (P)
       char_padding		     rmp	rP	  like ip but when in
							  insert mode
       clear_all_tabs		     tbc	ct	  clear all tab stops
							  (P)
       clear_margins		     mgc	MC	  clear right and left
							  soft margins
       clear_screen		     clear	cl	  clear screen and
							  home cursor (P*)
       clr_bol			     el1	cb	  Clear to beginning
							  of line
       clr_eol			     el		ce	  clear to end of line
							  (P)
       clr_eos			     ed		cd	  clear to end of
							  screen (P*)
       column_address		     hpa	ch	  horizontal position
							  #1, absolute (P)
       command_character	     cmdch	CC	  terminal settable
							  cmd character in
							  prototype !?
       create_window		     cwin	CW	  define a window #1
							  from #2,#3 to #4,#5
       cursor_address		     cup	cm	  move to row #1 col‐
							  umns #2
       cursor_down		     cud1	do	  down one line
       cursor_home		     home	ho	  home cursor (if no
							  cup)
       cursor_invisible		     civis	vi	  make cursor invisi‐
							  ble

       cursor_left		     cub1	le	  move left one space
       cursor_mem_address	     mrcup	CM	  memory relative cur‐
							  sor addressing, move
							  to row #1 columns #2
       cursor_normal		     cnorm	ve	  make cursor appear
							  normal (undo
							  civis/cvvis)
       cursor_right		     cuf1	nd	  non-destructive
							  space (move right
							  one space)
       cursor_to_ll		     ll		ll	  last line, first
							  column (if no cup)
       cursor_up		     cuu1	up	  up one line
       cursor_visible		     cvvis	vs	  make cursor very
							  visible
       define_char		     defc	ZE	  Define a character
							  #1, #2 dots wide,
							  descender #3
       delete_character		     dch1	dc	  delete character
							  (P*)
       delete_line		     dl1	dl	  delete line (P*)
       dial_phone		     dial	DI	  dial number #1
       dis_status_line		     dsl	ds	  disable status line
       display_clock		     dclk	DK	  display clock
       down_half_line		     hd		hd	  half a line down
       ena_acs			     enacs	eA	  enable alternate
							  char set
       enter_alt_charset_mode	     smacs	as	  start alternate
							  character set (P)
       enter_am_mode		     smam	SA	  turn on automatic
							  margins
       enter_blink_mode		     blink	mb	  turn on blinking
       enter_bold_mode		     bold	md	  turn on bold (extra
							  bright) mode
       enter_ca_mode		     smcup	ti	  string to start pro‐
							  grams using cup
       enter_delete_mode	     smdc	dm	  enter delete mode
       enter_dim_mode		     dim	mh	  turn on half-bright
							  mode
       enter_doublewide_mode	     swidm	ZF	  Enter double-wide
							  mode
       enter_draft_quality	     sdrfq	ZG	  Enter draft-quality
							  mode
       enter_insert_mode	     smir	im	  enter insert mode
       enter_italics_mode	     sitm	ZH	  Enter italic mode
       enter_leftward_mode	     slm	ZI	  Start leftward car‐
							  riage motion
       enter_micro_mode		     smicm	ZJ	  Start micro-motion
							  mode
       enter_near_letter_quality     snlq	ZK	  Enter NLQ mode
       enter_normal_quality	     snrmq	ZL	  Enter normal-quality
							  mode
       enter_protected_mode	     prot	mp	  turn on protected
							  mode
       enter_reverse_mode	     rev	mr	  turn on reverse
							  video mode
       enter_secure_mode	     invis	mk	  turn on blank mode
							  (characters invisi‐
							  ble)
       enter_shadow_mode	     sshm	ZM	  Enter shadow-print
							  mode
       enter_standout_mode	     smso	so	  begin standout mode
       enter_subscript_mode	     ssubm	ZN	  Enter subscript mode
       enter_superscript_mode	     ssupm	ZO	  Enter superscript
							  mode
       enter_underline_mode	     smul	us	  begin underline mode

       enter_upward_mode	     sum	ZP	  Start upward car‐
							  riage motion
       enter_xon_mode		     smxon	SX	  turn on xon/xoff
							  handshaking
       erase_chars		     ech	ec	  erase #1 characters
							  (P)
       exit_alt_charset_mode	     rmacs	ae	  end alternate char‐
							  acter set (P)
       exit_am_mode		     rmam	RA	  turn off automatic
							  margins
       exit_attribute_mode	     sgr0	me	  turn off all
							  attributes
       exit_ca_mode		     rmcup	te	  strings to end pro‐
							  grams using cup
       exit_delete_mode		     rmdc	ed	  end delete mode
       exit_doublewide_mode	     rwidm	ZQ	  End double-wide mode
       exit_insert_mode		     rmir	ei	  exit insert mode
       exit_italics_mode	     ritm	ZR	  End italic mode
       exit_leftward_mode	     rlm	ZS	  End left-motion mode
       exit_micro_mode		     rmicm	ZT	  End micro-motion
							  mode
       exit_shadow_mode		     rshm	ZU	  End shadow-print
							  mode
       exit_standout_mode	     rmso	se	  exit standout mode
       exit_subscript_mode	     rsubm	ZV	  End subscript mode
       exit_superscript_mode	     rsupm	ZW	  End superscript mode
       exit_underline_mode	     rmul	ue	  exit underline mode
       exit_upward_mode		     rum	ZX	  End reverse charac‐
							  ter motion
       exit_xon_mode		     rmxon	RX	  turn off xon/xoff
							  handshaking
       fixed_pause		     pause	PA	  pause for 2-3 sec‐
							  onds
       flash_hook		     hook	fh	  flash switch hook
       flash_screen		     flash	vb	  visible bell (may
							  not move cursor)
       form_feed		     ff		ff	  hardcopy terminal
							  page eject (P*)
       from_status_line		     fsl	fs	  return from status
							  line
       goto_window		     wingo	WG	  go to window #1
       hangup			     hup	HU	  hang-up phone
       init_1string		     is1	i1	  initialization
							  string
       init_2string		     is2	is	  initialization
							  string
       init_3string		     is3	i3	  initialization
							  string
       init_file		     if		if	  name of initializa‐
							  tion file
       init_prog		     iprog	iP	  path name of program
							  for initialization
       initialize_color		     initc	Ic	  initialize color #1
							  to (#2,#3,#4)
       initialize_pair		     initp	Ip	  Initialize color
							  pair #1 to
							  fg=(#2,#3,#4),
							  bg=(#5,#6,#7)
       insert_character		     ich1	ic	  insert character (P)
       insert_line		     il1	al	  insert line (P*)
       insert_padding		     ip		ip	  insert padding after
							  inserted character
       key_a1			     ka1	K1	  upper left of keypad
       key_a3			     ka3	K3	  upper right of key‐
							  pad
       key_b2			     kb2	K2	  center of keypad

       key_backspace		     kbs	kb	  backspace key
       key_beg			     kbeg	@1	  begin key
       key_btab			     kcbt	kB	  back-tab key
       key_c1			     kc1	K4	  lower left of keypad
       key_c3			     kc3	K5	  lower right of key‐
							  pad
       key_cancel		     kcan	@2	  cancel key
       key_catab		     ktbc	ka	  clear-all-tabs key
       key_clear		     kclr	kC	  clear-screen or
							  erase key
       key_close		     kclo	@3	  close key
       key_command		     kcmd	@4	  command key
       key_copy			     kcpy	@5	  copy key
       key_create		     kcrt	@6	  create key
       key_ctab			     kctab	kt	  clear-tab key
       key_dc			     kdch1	kD	  delete-character key
       key_dl			     kdl1	kL	  delete-line key
       key_down			     kcud1	kd	  down-arrow key
       key_eic			     krmir	kM	  sent by rmir or smir
							  in insert mode
       key_end			     kend	@7	  end key
       key_enter		     kent	@8	  enter/send key
       key_eol			     kel	kE	  clear-to-end-of-line
							  key
       key_eos			     ked	kS	  clear-to-end-of-
							  screen key
       key_exit			     kext	@9	  exit key
       key_f0			     kf0	k0	  F0 function key
       key_f1			     kf1	k1	  F1 function key
       key_f10			     kf10	k;	  F10 function key
       key_f11			     kf11	F1	  F11 function key
       key_f12			     kf12	F2	  F12 function key
       key_f13			     kf13	F3	  F13 function key
       key_f14			     kf14	F4	  F14 function key
       key_f15			     kf15	F5	  F15 function key
       key_f16			     kf16	F6	  F16 function key
       key_f17			     kf17	F7	  F17 function key
       key_f18			     kf18	F8	  F18 function key
       key_f19			     kf19	F9	  F19 function key
       key_f2			     kf2	k2	  F2 function key
       key_f20			     kf20	FA	  F20 function key
       key_f21			     kf21	FB	  F21 function key
       key_f22			     kf22	FC	  F22 function key
       key_f23			     kf23	FD	  F23 function key
       key_f24			     kf24	FE	  F24 function key
       key_f25			     kf25	FF	  F25 function key
       key_f26			     kf26	FG	  F26 function key
       key_f27			     kf27	FH	  F27 function key
       key_f28			     kf28	FI	  F28 function key
       key_f29			     kf29	FJ	  F29 function key
       key_f3			     kf3	k3	  F3 function key
       key_f30			     kf30	FK	  F30 function key
       key_f31			     kf31	FL	  F31 function key
       key_f32			     kf32	FM	  F32 function key
       key_f33			     kf33	FN	  F33 function key
       key_f34			     kf34	FO	  F34 function key
       key_f35			     kf35	FP	  F35 function key
       key_f36			     kf36	FQ	  F36 function key
       key_f37			     kf37	FR	  F37 function key
       key_f38			     kf38	FS	  F38 function key
       key_f39			     kf39	FT	  F39 function key
       key_f4			     kf4	k4	  F4 function key
       key_f40			     kf40	FU	  F40 function key
       key_f41			     kf41	FV	  F41 function key
       key_f42			     kf42	FW	  F42 function key
       key_f43			     kf43	FX	  F43 function key

       key_f44			     kf44	FY	  F44 function key
       key_f45			     kf45	FZ	  F45 function key
       key_f46			     kf46	Fa	  F46 function key
       key_f47			     kf47	Fb	  F47 function key
       key_f48			     kf48	Fc	  F48 function key
       key_f49			     kf49	Fd	  F49 function key
       key_f5			     kf5	k5	  F5 function key
       key_f50			     kf50	Fe	  F50 function key
       key_f51			     kf51	Ff	  F51 function key
       key_f52			     kf52	Fg	  F52 function key
       key_f53			     kf53	Fh	  F53 function key
       key_f54			     kf54	Fi	  F54 function key
       key_f55			     kf55	Fj	  F55 function key
       key_f56			     kf56	Fk	  F56 function key
       key_f57			     kf57	Fl	  F57 function key
       key_f58			     kf58	Fm	  F58 function key
       key_f59			     kf59	Fn	  F59 function key
       key_f6			     kf6	k6	  F6 function key
       key_f60			     kf60	Fo	  F60 function key
       key_f61			     kf61	Fp	  F61 function key
       key_f62			     kf62	Fq	  F62 function key
       key_f63			     kf63	Fr	  F63 function key
       key_f7			     kf7	k7	  F7 function key
       key_f8			     kf8	k8	  F8 function key
       key_f9			     kf9	k9	  F9 function key
       key_find			     kfnd	@0	  find key
       key_help			     khlp	%1	  help key
       key_home			     khome	kh	  home key
       key_ic			     kich1	kI	  insert-character key
       key_il			     kil1	kA	  insert-line key
       key_left			     kcub1	kl	  left-arrow key
       key_ll			     kll	kH	  lower-left key (home
							  down)
       key_mark			     kmrk	%2	  mark key
       key_message		     kmsg	%3	  message key
       key_move			     kmov	%4	  move key
       key_next			     knxt	%5	  next key
       key_npage		     knp	kN	  next-page key
       key_open			     kopn	%6	  open key
       key_options		     kopt	%7	  options key
       key_ppage		     kpp	kP	  previous-page key
       key_previous		     kprv	%8	  previous key
       key_print		     kprt	%9	  print key
       key_redo			     krdo	%0	  redo key
       key_reference		     kref	&1	  reference key
       key_refresh		     krfr	&2	  refresh key
       key_replace		     krpl	&3	  replace key
       key_restart		     krst	&4	  restart key
       key_resume		     kres	&5	  resume key
       key_right		     kcuf1	kr	  right-arrow key
       key_save			     ksav	&6	  save key
       key_sbeg			     kBEG	&9	  shifted begin key
       key_scancel		     kCAN	&0	  shifted cancel key
       key_scommand		     kCMD	*1	  shifted command key
       key_scopy		     kCPY	*2	  shifted copy key
       key_screate		     kCRT	*3	  shifted create key
       key_sdc			     kDC	*4	  shifted delete-char‐
							  acter key
       key_sdl			     kDL	*5	  shifted delete-line
							  key
       key_select		     kslt	*6	  select key
       key_send			     kEND	*7	  shifted end key
       key_seol			     kEOL	*8	  shifted clear-to-
							  end-of-line key
       key_sexit		     kEXT	*9	  shifted exit key
       key_sf			     kind	kF	  scroll-forward key

       key_sfind		     kFND	*0	  shifted find key
       key_shelp		     kHLP	#1	  shifted help key
       key_shome		     kHOM	#2	  shifted home key
       key_sic			     kIC	#3	  shifted insert-char‐
							  acter key
       key_sleft		     kLFT	#4	  shifted left-arrow
							  key
       key_smessage		     kMSG	%a	  shifted message key
       key_smove		     kMOV	%b	  shifted move key
       key_snext		     kNXT	%c	  shifted next key
       key_soptions		     kOPT	%d	  shifted options key
       key_sprevious		     kPRV	%e	  shifted previous key
       key_sprint		     kPRT	%f	  shifted print key
       key_sr			     kri	kR	  scroll-backward key
       key_sredo		     kRDO	%g	  shifted redo key
       key_sreplace		     kRPL	%h	  shifted replace key
       key_sright		     kRIT	%i	  shifted right-arrow
							  key
       key_srsume		     kRES	%j	  shifted resume key
       key_ssave		     kSAV	!1	  shifted save key
       key_ssuspend		     kSPD	!2	  shifted suspend key
       key_stab			     khts	kT	  set-tab key
       key_sundo		     kUND	!3	  shifted undo key
       key_suspend		     kspd	&7	  suspend key
       key_undo			     kund	&8	  undo key
       key_up			     kcuu1	ku	  up-arrow key
       keypad_local		     rmkx	ke	  leave 'key‐
							  board_transmit' mode
       keypad_xmit		     smkx	ks	  enter 'key‐
							  board_transmit' mode
       lab_f0			     lf0	l0	  label on function
							  key f0 if not f0
       lab_f1			     lf1	l1	  label on function
							  key f1 if not f1
       lab_f10			     lf10	la	  label on function
							  key f10 if not f10
       lab_f2			     lf2	l2	  label on function
							  key f2 if not f2
       lab_f3			     lf3	l3	  label on function
							  key f3 if not f3
       lab_f4			     lf4	l4	  label on function
							  key f4 if not f4
       lab_f5			     lf5	l5	  label on function
							  key f5 if not f5
       lab_f6			     lf6	l6	  label on function
							  key f6 if not f6
       lab_f7			     lf7	l7	  label on function
							  key f7 if not f7
       lab_f8			     lf8	l8	  label on function
							  key f8 if not f8
       lab_f9			     lf9	l9	  label on function
							  key f9 if not f9
       label_format		     fln	Lf	  label format
       label_off		     rmln	LF	  turn off soft labels
       label_on			     smln	LO	  turn on soft labels
       meta_off			     rmm	mo	  turn off meta mode
       meta_on			     smm	mm	  turn on meta mode
							  (8th-bit on)
       micro_column_address	     mhpa	ZY	  Like column_address
							  in micro mode
       micro_down		     mcud1	ZZ	  Like cursor_down in
							  micro mode
       micro_left		     mcub1	Za	  Like cursor_left in
							  micro mode
       micro_right		     mcuf1	Zb	  Like cursor_right in
							  micro mode

       micro_row_address	     mvpa	Zc	  Like row_address #1
							  in micro mode
       micro_up			     mcuu1	Zd	  Like cursor_up in
							  micro mode
       newline			     nel	nw	  newline (behave like
							  cr followed by lf)
       order_of_pins		     porder	Ze	  Match software bits
							  to print-head pins
       orig_colors		     oc		oc	  Set all color pairs
							  to the original ones
       orig_pair		     op		op	  Set default pair to
							  its original value
       pad_char			     pad	pc	  padding char
							  (instead of null)
       parm_dch			     dch	DC	  delete #1 characters
							  (P*)
       parm_delete_line		     dl		DL	  delete #1 lines (P*)
       parm_down_cursor		     cud	DO	  down #1 lines (P*)
       parm_down_micro		     mcud	Zf	  Like parm_down_cur‐
							  sor in micro mode
       parm_ich			     ich	IC	  insert #1 characters
							  (P*)
       parm_index		     indn	SF	  scroll forward #1
							  lines (P)
       parm_insert_line		     il		AL	  insert #1 lines (P*)
       parm_left_cursor		     cub	LE	  move #1 characters
							  to the left (P)
       parm_left_micro		     mcub	Zg	  Like parm_left_cur‐
							  sor in micro mode
       parm_right_cursor	     cuf	RI	  move #1 characters
							  to the right (P*)
       parm_right_micro		     mcuf	Zh	  Like parm_right_cur‐
							  sor in micro mode
       parm_rindex		     rin	SR	  scroll back #1 lines
							  (P)
       parm_up_cursor		     cuu	UP	  up #1 lines (P*)
       parm_up_micro		     mcuu	Zi	  Like parm_up_cursor
							  in micro mode
       pkey_key			     pfkey	pk	  program function key
							  #1 to type string #2
       pkey_local		     pfloc	pl	  program function key
							  #1 to execute string
							  #2
       pkey_xmit		     pfx	px	  program function key
							  #1 to transmit
							  string #2
       plab_norm		     pln	pn	  program label #1 to
							  show string #2
       print_screen		     mc0	ps	  print contents of
							  screen
       prtr_non			     mc5p	pO	  turn on printer for
							  #1 bytes
       prtr_off			     mc4	pf	  turn off printer
       prtr_on			     mc5	po	  turn on printer
       pulse			     pulse	PU	  select pulse dialing
       quick_dial		     qdial	QD	  dial number #1 with‐
							  out checking
       remove_clock		     rmclk	RC	  remove clock
       repeat_char		     rep	rp	  repeat char #1 #2
							  times (P*)
       req_for_input		     rfi	RF	  send next input char
							  (for ptys)
       reset_1string		     rs1	r1	  reset string
       reset_2string		     rs2	r2	  reset string
       reset_3string		     rs3	r3	  reset string
       reset_file		     rf		rf	  name of reset file

       restore_cursor		     rc		rc	  restore cursor to
							  position of last
							  save_cursor
       row_address		     vpa	cv	  vertical position #1
							  absolute (P)
       save_cursor		     sc		sc	  save current cursor
							  position (P)
       scroll_forward		     ind	sf	  scroll text up (P)
       scroll_reverse		     ri		sr	  scroll text down (P)
       select_char_set		     scs	Zj	  Select character
							  set, #1
       set_attributes		     sgr	sa	  define video
							  attributes #1-#9
							  (PG9)
       set_background		     setb	Sb	  Set background color
							  #1
       set_bottom_margin	     smgb	Zk	  Set bottom margin at
							  current line
       set_bottom_margin_parm	     smgbp	Zl	  Set bottom margin at
							  line #1 or (if smgtp
							  is not given) #2
							  lines from bottom
       set_clock		     sclk	SC	  set clock, #1 hrs #2
							  mins #3 secs
       set_color_pair		     scp	sp	  Set current color
							  pair to #1
       set_foreground		     setf	Sf	  Set foreground color
							  #1
       set_left_margin		     smgl	ML	  set left soft margin
							  at current col‐
							  umn.	      See
							  smgl. (ML is not in
							  BSD termcap).
       set_left_margin_parm	     smglp	Zm	  Set left (right)
							  margin at column #1
       set_right_margin		     smgr	MR	  set right soft mar‐
							  gin at current col‐
							  umn
       set_right_margin_parm	     smgrp	Zn	  Set right margin at
							  column #1
       set_tab			     hts	st	  set a tab in every
							  row, current columns
       set_top_margin		     smgt	Zo	  Set top margin at
							  current line
       set_top_margin_parm	     smgtp	Zp	  Set top (bottom)
							  margin at row #1
       set_window		     wind	wi	  current window is
							  lines #1-#2 cols
							  #3-#4
       start_bit_image		     sbim	Zq	  Start printing bit
							  image graphics
       start_char_set_def	     scsd	Zr	  Start character set
							  definition #1, with
							  #2 characters in the
							  set
       stop_bit_image		     rbim	Zs	  Stop printing bit
							  image graphics
       stop_char_set_def	     rcsd	Zt	  End definition of
							  character set #1
       subscript_characters	     subcs	Zu	  List of subscript‐
							  able characters
       superscript_characters	     supcs	Zv	  List of superscript‐
							  able characters
       tab			     ht		ta	  tab to next 8-space
							  hardware tab stop

       these_cause_cr		     docr	Zw	  Printing any of
							  these characters
							  causes CR
       to_status_line		     tsl	ts	  move to status line,
							  column #1
       tone			     tone	TO	  select touch tone
							  dialing
       underline_char		     uc		uc	  underline char and
							  move past it
       up_half_line		     hu		hu	  half a line up
       user0			     u0		u0	  User string #0
       user1			     u1		u1	  User string #1
       user2			     u2		u2	  User string #2
       user3			     u3		u3	  User string #3
       user4			     u4		u4	  User string #4
       user5			     u5		u5	  User string #5
       user6			     u6		u6	  User string #6
       user7			     u7		u7	  User string #7
       user8			     u8		u8	  User string #8
       user9			     u9		u9	  User string #9
       wait_tone		     wait	WA	  wait for dial-tone
       xoff_character		     xoffc	XF	  XOFF character
       xon_character		     xonc	XN	  XON character
       zero_motion		     zerom	Zx	  No motion for subse‐
							  quent character

       The following string capabilities are present in the SVr4.0 term struc‐
       ture, but were originally not documented in the man page.

	       Variable		     Cap-	  TCap	       Description
		String		     name	  Code
       alt_scancode_esc		     scesa	  S8	    Alternate escape
							    for scancode emu‐
							    lation
       bit_image_carriage_return     bicr	  Yv	    Move to beginning
							    of same row
       bit_image_newline	     binel	  Zz	    Move to next row
							    of the bit image
       bit_image_repeat		     birep	  Xy	    Repeat bit image
							    cell #1 #2 times
       char_set_names		     csnm	  Zy	    Produce #1'th item
							    from list of char‐
							    acter set names
       code_set_init		     csin	  ci	    Init sequence for
							    multiple codesets
       color_names		     colornm	  Yw	    Give name for
							    color #1
       define_bit_image_region	     defbi	  Yx	    Define rectan‐
							    gualar bit image
							    region
       device_type		     devt	  dv	    Indicate lan‐
							    guage/codeset sup‐
							    port
       display_pc_char		     dispc	  S1	    Display PC charac‐
							    ter #1
       end_bit_image_region	     endbi	  Yy	    End a bit-image
							    region
       enter_pc_charset_mode	     smpch	  S2	    Enter PC character
							    display mode
       enter_scancode_mode	     smsc	  S4	    Enter PC scancode
							    mode
       exit_pc_charset_mode	     rmpch	  S3	    Exit PC character
							    display mode
       exit_scancode_mode	     rmsc	  S5	    Exit PC scancode
							    mode

       get_mouse		     getm	  Gm	    Curses should get
							    button events,
							    parameter #1 not
							    documented.
       key_mouse		     kmous	  Km	    Mouse event has
							    occurred
       mouse_info		     minfo	  Mi	    Mouse status
							    information
       pc_term_options		     pctrm	  S6	    PC terminal
							    options
       pkey_plab		     pfxl	  xl	    Program function
							    key #1 to type
							    string #2 and show
							    string #3
       req_mouse_pos		     reqmp	  RQ	    Request mouse
							    position
       scancode_escape		     scesc	  S7	    Escape for scan‐
							    code emulation
       set0_des_seq		     s0ds	  s0	    Shift to codeset 0
							    (EUC set 0, ASCII)
       set1_des_seq		     s1ds	  s1	    Shift to codeset 1
       set2_des_seq		     s2ds	  s2	    Shift to codeset 2
       set3_des_seq		     s3ds	  s3	    Shift to codeset 3
       set_a_background		     setab	  AB	    Set background
							    color to #1, using
							    ANSI escape
       set_a_foreground		     setaf	  AF	    Set foreground
							    color to #1, using
							    ANSI escape
       set_color_band		     setcolor	  Yz	    Change to ribbon
							    color #1
       set_lr_margin		     smglr	  ML	    Set both left and
							    right margins to
							    #1, #2.  (ML is
							    not in BSD term‐
							    cap).
       set_page_length		     slines	  YZ	    Set page length to
							    #1 lines
       set_tb_margin		     smgtb	  MT	    Sets both top and
							    bottom margins to
							    #1, #2

	The  XSI Curses standard added these hardcopy capabilities.  They were
	used in some post-4.1 versions of System V curses, e.g.,  Solaris  2.5
	and  IRIX  6.x.	 Except for YI, the ncurses termcap names for them are
	invented.  According to the XSI Curses standard, they have no  termcap
	names.	 If  your compiled terminfo entries use these, they may not be
	binary-compatible with System V terminfo entries after SVr4.1; beware!

		Variable	      Cap-	 TCap	      Description
		 String		      name	 Code
	enter_horizontal_hl_mode      ehhlm	 Xh	  Enter horizontal
							  highlight mode
	enter_left_hl_mode	      elhlm	 Xl	  Enter left highlight
							  mode
	enter_low_hl_mode	      elohlm	 Xo	  Enter low highlight
							  mode
	enter_right_hl_mode	      erhlm	 Xr	  Enter right high‐
							  light mode
	enter_top_hl_mode	      ethlm	 Xt	  Enter top highlight
							  mode
	enter_vertical_hl_mode	      evhlm	 Xv	  Enter vertical high‐
							  light mode

	set_a_attributes	      sgr1	 sA	  Define second set of
							  video attributes
							  #1-#6
	set_pglen_inch		      slength	 YI	  Set page length to
							  #1 hundredth of an
							  inch (some implemen‐
							  tations use sL for
							  termcap).

   User-Defined Capabilities
       The preceding section listed the predefined  capabilities.   They  deal
       with  some special features for terminals no longer (or possibly never)
       produced.  Occasionally there are special features of  newer  terminals
       which  are awkward or impossible to represent by reusing the predefined
       capabilities.

       ncurses addresses this limitation by  allowing  user-defined  capabili‐
       ties.  The tic and infocmp programs provide the -x option for this pur‐
       pose.  When -x is set, tic treats unknown capabilities as user-defined.
       That  is,  if tic encounters a capability name which it does not recog‐
       nize, it infers its type (boolean, number or string)  from  the	syntax
       and   makes   an	  extended  table  entry  for  that  capability.   The
       use_extended_names function makes this information conditionally avail‐
       able  to	 applications.	 The ncurses library provides the data leaving
       most of the behavior to applications:

       ·   User-defined capability strings whose  name	begins	with  “k”  are
	   treated as function keys.

       ·   The	types  (boolean,  number,  string)  determined	by  tic can be
	   inferred by successful calls on tigetflag, etc.

       ·   If the capability name happens to be two characters, the capability
	   is also available through the termcap interface.

       While termcap is said to be extensible because it does not use a prede‐
       fined set of capabilities, in practice it has been limited to the capa‐
       bilities	 defined by terminfo implementations.  As a rule, user-defined
       capabilities intended for use by termcap applications should be limited
       to  booleans  and  numbers  to  avoid  running past the 1023 byte limit
       assumed by termcap implementations and their applications.  In particu‐
       lar,  providing	extended  sets	of function keys (past the 60 numbered
       keys and the handful of special named keys)  is	best  done  using  the
       longer names available using terminfo.

   A Sample Entry
       The following entry, describing an ANSI-standard terminal, is represen‐
       tative of what a terminfo entry for a modern terminal  typically	 looks
       like.

     ansi|ansi/pc-term compatible with color,
	     mc5i,
	     colors#8, ncv#3, pairs#64,
	     cub=\E[%p1%dD, cud=\E[%p1%dB, cuf=\E[%p1%dC,
	     cuu=\E[%p1%dA, dch=\E[%p1%dP, dl=\E[%p1%dM,
	     ech=\E[%p1%dX, el1=\E[1K, hpa=\E[%p1%dG, ht=\E[I,
	     ich=\E[%p1%d@, il=\E[%p1%dL, indn=\E[%p1%dS, .indn=\E[%p1%dT,
	     kbs=^H, kcbt=\E[Z, kcub1=\E[D, kcud1=\E[B,
	     kcuf1=\E[C, kcuu1=\E[A, kf1=\E[M, kf10=\E[V,
	     kf11=\E[W, kf12=\E[X, kf2=\E[N, kf3=\E[O, kf4=\E[P,
	     kf5=\E[Q, kf6=\E[R, kf7=\E[S, kf8=\E[T, kf9=\E[U,
	     kich1=\E[L, mc4=\E[4i, mc5=\E[5i, nel=\r\E[S,
	     op=\E[37;40m, rep=%p1%c\E[%p2%{1}%-%db,
	     rin=\E[%p1%dT, s0ds=\E(B, s1ds=\E)B, s2ds=\E*B,
	     s3ds=\E+B, setab=\E[4%p1%dm, setaf=\E[3%p1%dm,
	     setb=\E[4%?%p1%{1}%=%t4%e%p1%{3}%=%t6%e%p1%{4}%=%t1%e%p1%{6}%=%t3%e%p1%d%;m,
	     setf=\E[3%?%p1%{1}%=%t4%e%p1%{3}%=%t6%e%p1%{4}%=%t1%e%p1%{6}%=%t3%e%p1%d%;m,
	     sgr=\E[0;10%?%p1%t;7%;%?%p2%t;4%;%?%p3%t;7%;%?%p4%t;5%;%?%p6%t;1%;%?%p7%t;8%;%?%p8%t;11%;%?%p9%t;12%;m,
	     sgr0=\E[0;10m, tbc=\E[2g, u6=\E[%d;%dR, u7=\E[6n,
	     u8=\E[?%[;0123456789]c, u9=\E[c, vpa=\E[%p1%dd,

       Entries	may continue onto multiple lines by placing white space at the
       beginning of each line except the first.	 Comments may be  included  on
       lines beginning with “#”.  Capabilities in terminfo are of three types:

       ·   Boolean capabilities which indicate that the terminal has some par‐
	   ticular feature,

       ·   numeric capabilities giving the size of the terminal or the size of
	   particular delays, and

       ·   string  capabilities,  which	 give  a sequence which can be used to
	   perform particular terminal operations.

   Types of Capabilities
       All capabilities have names.  For instance, the fact that ANSI-standard
       terminals  have	automatic margins (i.e., an automatic return and line-
       feed when the end of a line is reached) is indicated by the  capability
       am.   Hence  the description of ansi includes am.  Numeric capabilities
       are followed by the character `#' and  then  a  positive	 value.	  Thus
       cols, which indicates the number of columns the terminal has, gives the
       value `80' for ansi.  Values for numeric capabilities may be  specified
       in decimal, octal or hexadecimal, using the C programming language con‐
       ventions (e.g., 255, 0377 and 0xff or 0xFF).

       Finally, string valued capabilities, such as el (clear to end  of  line
       sequence)  are  given  by  the  two-character  code, an `=', and then a
       string ending at the next following `,'.

       A number of escape sequences are provided in the string valued capabil‐
       ities  for easy encoding of characters there.  Both \E and \e map to an
       ESCAPE character, ^x maps to a control-x for any appropriate x, and the
       sequences  \n \l \r \t \b \f \s give a newline, line-feed, return, tab,
       backspace, form-feed, and space.	 Other escapes include

       ·   \^ for ^,

       ·   \\ for \,

       ·   \, for comma,

       ·   \: for :,

       ·   and \0 for null.

	   \0 will produce \200, which does not terminate a string but behaves
	   as  a null character on most terminals, providing CS7 is specified.
	   See stty(1).

	   The reason for this quirk is to maintain  binary  compatibility  of
	   the	compiled  terminfo files with other implementations, e.g., the
	   SVr4 systems, which document this.	Compiled  terminfo  files  use
	   null-terminated  strings,  with  no	lengths.  Modifying this would
	   require a new binary format, which would not work with other imple‐
	   mentations.

       Finally, characters may be given as three octal digits after a \.

       A  delay	 in  milliseconds  may appear anywhere in a string capability,
       enclosed in $<..> brackets, as in el=\EK$<5>,  and  padding  characters
       are  supplied by tputs to provide this delay.  The delay must be a num‐
       ber with at most one decimal place of precision; it may be followed  by
       suffixes `*' or '/' or both.  A `*' indicates that the padding required
       is proportional to the number of lines affected by the  operation,  and
       the  amount  given  is the per-affected-unit padding required.  (In the
       case of insert character, the factor  is	 still	the  number  of	 lines
       affected.)   Normally,  padding	is  advisory if the device has the xon
       capability; it is used  for  cost  computation  but  does  not  trigger
       delays.	 A  `/'	 suffix	 indicates  that  the padding is mandatory and
       forces a delay of the given number of milliseconds even on devices  for
       which xon is present to indicate flow control.

       Sometimes  individual  capabilities must be commented out.  To do this,
       put a period before the capability name.	 For example, see  the	second
       ind in the example above.

   Fetching Compiled Descriptions
       The  ncurses  library  searches	for  terminal  descriptions in several
       places.	It uses only the first description found.  The library	has  a
       compiled-in  list  of places to search which can be overridden by envi‐
       ronment variables.   Before  starting  to  search,  ncurses  eliminates
       duplicates in its search list.

       ·   If  the  environment variable TERMINFO is set, it is interpreted as
	   the pathname of a directory containing the compiled description you
	   are working on.  Only that directory is searched.

       ·   If  TERMINFO is not set, ncurses will instead look in the directory
	   $HOME/.terminfo for a compiled description.

       ·   Next, if the environment variable  TERMINFO_DIRS  is	 set,  ncurses
	   will	 interpret  the	 contents of that variable as a list of colon-
	   separated directories (or database files) to be searched.

	   An empty directory name (i.e., if the variable begins or ends  with
	   a  colon,  or contains adacent colons) is interpreted as the system
	   location /usr/share/terminfo.

       ·   Finally, ncurses searches these compiled-in locations:

	   ·   a list of directories (no default value), and

	   ·   the system terminfo directory,  /usr/share/terminfo  (the  com‐
	       piled-in default).

   Preparing Descriptions
       We  now	outline	 how  to  prepare descriptions of terminals.  The most
       effective way to prepare a terminal description	is  by	imitating  the
       description  of	a  similar  terminal  in  terminfo  and	 to build up a
       description gradually, using partial descriptions with vi or some other
       screen-oriented	program to check that they are correct.	 Be aware that
       a very unusual terminal may expose deficiencies in the ability  of  the
       terminfo file to describe it or bugs in the screen-handling code of the
       test program.

       To get the padding for insert line right (if the terminal  manufacturer
       did  not	 document  it)	a  severe test is to edit a large file at 9600
       baud, delete 16 or so lines from the middle of the screen, then hit the
       `u' key several times quickly.  If the terminal messes up, more padding
       is usually needed.  A similar test can be used for insert character.

   Basic Capabilities
       The number of columns on each line for the terminal  is	given  by  the
       cols  numeric capability.  If the terminal is a CRT, then the number of
       lines on the screen is given by the lines capability.  If the  terminal
       wraps  around  to  the  beginning  of the next line when it reaches the
       right margin, then it should have the am capability.  If	 the  terminal
       can  clear  its	screen,	 leaving the cursor in the home position, then
       this is given by the clear string capability.  If  the  terminal	 over‐
       strikes	(rather	 than  clearing	 a position when a character is struck
       over) then it should have the os capability.   If  the  terminal	 is  a
       printing terminal, with no soft copy unit, give it both hc and os.  (os
       applies to storage scope terminals, such as TEKTRONIX 4010  series,  as
       well  as	 hard copy and APL terminals.)	If there is a code to move the
       cursor to the left edge of the current row, give this as cr.  (Normally
       this  will  be carriage return, control M.)  If there is a code to pro‐
       duce an audible signal (bell, beep, etc) give this as bel.

       If there is a code to move the cursor one position to the left (such as
       backspace)  that	 capability should be given as cub1.  Similarly, codes
       to move to the right, up, and down should be given as cuf1,  cuu1,  and
       cud1.   These  local cursor motions should not alter the text they pass
       over, for example, you would not	 normally  use	`cuf1= '  because  the
       space would erase the character moved over.

       A very important point here is that the local cursor motions encoded in
       terminfo are undefined at the left and top edges	 of  a	CRT  terminal.
       Programs should never attempt to backspace around the left edge, unless
       bw is given, and never attempt to go up locally off the top.  In	 order
       to  scroll  text up, a program will go to the bottom left corner of the
       screen and send the ind (index) string.

       To scroll text down, a program goes to  the  top	 left  corner  of  the
       screen and sends the ri (reverse index) string.	The strings ind and ri
       are undefined when not on their respective corners of the screen.

       Parameterized versions of the scrolling	sequences  are	indn  and  rin
       which  have  the same semantics as ind and ri except that they take one
       parameter, and scroll that many lines.  They are also undefined	except
       at the appropriate edge of the screen.

       The  am capability tells whether the cursor sticks at the right edge of
       the screen when text is output, but this does not necessarily apply  to
       a  cuf1	from  the last column.	The only local motion which is defined
       from the left edge is if bw is given, then a cub1 from  the  left  edge
       will  move  to the right edge of the previous row.  If bw is not given,
       the effect is undefined.	 This is useful for drawing a box  around  the
       edge of the screen, for example.	 If the terminal has switch selectable
       automatic margins, the terminfo file usually assumes that this  is  on;
       i.e.,  am.  If the terminal has a command which moves to the first col‐
       umn of the next line, that command can be given as nel  (newline).   It
       does  not  matter  if  the  command clears the remainder of the current
       line, so if the terminal has no cr and lf it may still be  possible  to
       craft a working nel out of one or both of them.

       These capabilities suffice to describe hard-copy and “glass-tty” termi‐
       nals.  Thus the model 33 teletype is described as

       33|tty33|tty|model 33 teletype,
	    bel=^G, cols#72, cr=^M, cud1=^J, hc, ind=^J, os,

       while the Lear Siegler ADM-3 is described as

       adm3|3|lsi adm3,
	    am, bel=^G, clear=^Z, cols#80, cr=^M, cub1=^H, cud1=^J,
	    ind=^J, lines#24,

   Parameterized Strings
       Cursor addressing and other strings requiring parameters in the	termi‐
       nal  are described by a parameterized string capability, with printf(3)
       like escapes %x in it.  For example, to address	the  cursor,  the  cup
       capability  is  given,  using  two  parameters:	the  row and column to
       address to.  (Rows and columns are numbered from zero and refer to  the
       physical screen visible to the user, not to any unseen memory.)	If the
       terminal has memory relative cursor addressing, that can	 be  indicated
       by mrcup.

       The  parameter mechanism uses a stack and special % codes to manipulate
       it.  Typically a sequence will push one	of  the	 parameters  onto  the
       stack  and  then print it in some format.  Print (e.g., "%d") is a spe‐
       cial case.  Other operations, including "%t" pop their operand from the
       stack.	It  is noted that more complex operations are often necessary,
       e.g., in the sgr string.

       The % encodings have the following meanings:

       %%   outputs `%'

       %[[:]flags][width[.precision]][doxXs]
	    as in printf, flags are [-+#] and space.  Use a `:' to  allow  the
	    next  character to be a `-' flag, avoiding interpreting "%-" as an
	    operator.

       %c   print pop() like %c in printf

       %s   print pop() like %s in printf

       %p[1-9]
	    push i'th parameter

       %P[a-z]
	    set dynamic variable [a-z] to pop()

       %g[a-z]
	    get dynamic variable [a-z] and push it

       %P[A-Z]
	    set static variable [a-z] to pop()

       %g[A-Z]
	    get static variable [a-z] and push it

	    The terms "static" and "dynamic"  are  misleading.	 Historically,
	    these are simply two different sets of variables, whose values are
	    not reset between calls to tparm.  However, that fact is not docu‐
	    mented  in	other  implementations.	  Relying on it will adversely
	    impact portability to other implementations.

       %'c' char constant c

       %{nn}
	    integer constant nn

       %l   push strlen(pop)

       %+ %- %* %/ %m
	    arithmetic (%m is mod): push(pop() op pop())

       %& %| %^
	    bit operations (AND, OR and exclusive-OR): push(pop() op pop())

       %= %> %<
	    logical operations: push(pop() op pop())

       %A, %O
	    logical AND and OR operations (for conditionals)

       %! %~
	    unary operations (logical and bit complement): push(op pop())

       %i   add 1 to first two parameters (for ANSI terminals)

       %? expr %t thenpart %e elsepart %;
	    This forms an if-then-else.	 The %e elsepart is optional.  Usually
	    the	 %?  expr  part	 pushes a value onto the stack, and %t pops it
	    from the stack, testing if it is nonzero (true).  If  it  is  zero
	    (false), control passes to the %e (else) part.

	    It is possible to form else-if's a la Algol 68:
	    %? c1 %t b1 %e c2 %t b2 %e c3 %t b3 %e c4 %t b4 %e %;

	    where ci are conditions, bi are bodies.

	    Use	 the  -f  option of tic or infocmp to see the structure of if-
	    then-else's.  Some strings, e.g., sgr can be very complicated when
	    written  on	 one line.  The -f option splits the string into lines
	    with the parts indented.

       Binary operations are in postfix form with the operands	in  the	 usual
       order.  That is, to get x-5 one would use "%gx%{5}%-".  %P and %g vari‐
       ables are persistent across escape-string evaluations.

       Consider the HP2645, which, to get to row 3 and column 12, needs to  be
       sent  \E&a12c03Y padded for 6 milliseconds.  Note that the order of the
       rows and columns is inverted here, and that  the	 row  and  column  are
       printed	  as	two    digits.	   Thus	   its	 cup   capability   is
       “cup=6\E&%p2%2dc%p1%2dY”.

       The Microterm ACT-IV needs the current row and column sent preceded  by
       a   ^T,	 with	the   row   and	  column  simply  encoded  in  binary,
       “cup=^T%p1%c%p2%c”.  Terminals which  use  “%c”	need  to  be  able  to
       backspace  the cursor (cub1), and to move the cursor up one line on the
       screen (cuu1).  This is necessary because it  is	 not  always  safe  to
       transmit	 \n ^D and \r, as the system may change or discard them.  (The
       library routines dealing with terminfo set tty modes so that  tabs  are
       never  expanded, so \t is safe to send.	This turns out to be essential
       for the Ann Arbor 4080.)

       A final example is the LSI ADM-3a, which uses row and column offset  by
       a blank character, thus “cup=\E=%p1%' '%+%c%p2%' '%+%c”.	 After sending
       `\E=', this pushes the first parameter, pushes the ASCII	 value	for  a
       space (32), adds them (pushing the sum on the stack in place of the two
       previous values) and outputs that value as a character.	Then the  same
       is  done for the second parameter.  More complex arithmetic is possible
       using the stack.

   Cursor Motions
       If the terminal has a fast way to home the cursor (to very  upper  left
       corner  of screen) then this can be given as home; similarly a fast way
       of getting to the lower left-hand corner can be given as ll;  this  may
       involve going up with cuu1 from the home position, but a program should
       never do this itself (unless ll does) because it can make no assumption
       about  the  effect  of moving up from the home position.	 Note that the
       home position is the same as addressing to (0,0): to the top left  cor‐
       ner of the screen, not of memory.  (Thus, the \EH sequence on HP termi‐
       nals cannot be used for home.)

       If the terminal has row or column absolute cursor addressing, these can
       be  given  as  single  parameter	 capabilities hpa (horizontal position
       absolute) and vpa (vertical position absolute).	 Sometimes  these  are
       shorter	than  the  more	 general  two  parameter sequence (as with the
       hp2645) and can be used in preference to cup.  If there are  parameter‐
       ized  local  motions  (e.g.,  move  n spaces to the right) these can be
       given as cud, cub, cuf, and cuu with a single parameter indicating  how
       many  spaces  to move.  These are primarily useful if the terminal does
       not have cup, such as the TEKTRONIX 4025.

       If the terminal needs to be in a special mode when  running  a  program
       that uses these capabilities, the codes to enter and exit this mode can
       be given as smcup and rmcup.  This arises, for example, from  terminals
       like  the  Concept  with more than one page of memory.  If the terminal
       has only memory relative cursor addressing and not screen relative cur‐
       sor addressing, a one screen-sized window must be fixed into the termi‐
       nal for cursor addressing to work properly.  This is also used for  the
       TEKTRONIX  4025,	 where	smcup sets the command character to be the one
       used by terminfo.  If the smcup sequence will not  restore  the	screen
       after  an  rmcup	 sequence  is output (to the state prior to outputting
       rmcup), specify nrrmc.

   Area Clears
       If the terminal can clear from the current position to the end  of  the
       line,  leaving  the cursor where it is, this should be given as el.  If
       the terminal can clear from the beginning of the line  to  the  current
       position	 inclusive,  leaving  the  cursor  where it is, this should be
       given as el1.  If the terminal can clear from the current  position  to
       the  end	 of  the display, then this should be given as ed.  Ed is only
       defined from the first column of a line.	 (Thus, it can be simulated by
       a request to delete a large number of lines, if a true ed is not avail‐
       able.)

   Insert/delete line and vertical motions
       If the terminal can open a new blank line before	 the  line  where  the
       cursor  is,  this  should  be  given as il1; this is done only from the
       first position of a line.  The cursor must then	appear	on  the	 newly
       blank  line.   If  the terminal can delete the line which the cursor is
       on, then this should be given as dl1; this is done only from the	 first
       position on the line to be deleted.  Versions of il1 and dl1 which take
       a single parameter and insert or delete that many lines can be given as
       il and dl.

       If  the	terminal  has a settable scrolling region (like the vt100) the
       command to set this can be described with  the  csr  capability,	 which
       takes two parameters: the top and bottom lines of the scrolling region.
       The cursor position is, alas, undefined after using this command.

       It is possible to get the effect of insert or delete line using csr  on
       a  properly chosen region; the sc and rc (save and restore cursor) com‐
       mands may be useful for ensuring that  your  synthesized	 insert/delete
       string  does  not  move the cursor.  (Note that the ncurses(3X) library
       does  this  synthesis  automatically,   so   you	  need	 not   compose
       insert/delete strings for an entry with csr).

       Yet another way to construct insert and delete might be to use a combi‐
       nation of index with the memory-lock feature found  on  some  terminals
       (like the HP-700/90 series, which however also has insert/delete).

       Inserting  lines	 at  the  top or bottom of the screen can also be done
       using ri or ind on many terminals without a  true  insert/delete	 line,
       and is often faster even on terminals with those features.

       The boolean non_dest_scroll_region should be set if each scrolling win‐
       dow is effectively a view port on a screen-sized canvas.	 To  test  for
       this capability, create a scrolling region in the middle of the screen,
       write something to the bottom line, move the cursor to the top  of  the
       region, and do ri followed by dl1 or ind.  If the data scrolled off the
       bottom of the region by the  ri	re-appears,  then  scrolling  is  non-
       destructive.   System  V	 and XSI Curses expect that ind, ri, indn, and
       rin will simulate destructive scrolling; their  documentation  cautions
       you  not to define csr unless this is true.  This curses implementation
       is more liberal and will do explicit erases after scrolling if ndstr is
       defined.

       If  the	terminal has the ability to define a window as part of memory,
       which all commands affect, it should  be	 given	as  the	 parameterized
       string  wind.  The four parameters are the starting and ending lines in
       memory and the starting and ending columns in memory, in that order.

       If the terminal can retain display memory above, then the da capability
       should  be  given;  if  display	memory	can be retained below, then db
       should be given.	 These indicate that deleting a line or scrolling  may
       bring  non-blank lines up from below or that scrolling back with ri may
       bring down non-blank lines.

   Insert/Delete Character
       There are two basic kinds of  intelligent  terminals  with  respect  to
       insert/delete  character	 which	can  be described using terminfo.  The
       most common insert/delete character operations affect only the  charac‐
       ters  on	 the current line and shift characters off the end of the line
       rigidly.	 Other terminals, such as the Concept 100 and the Perkin Elmer
       Owl, make a distinction between typed and untyped blanks on the screen,
       shifting upon an insert or delete only  to  an  untyped	blank  on  the
       screen which is either eliminated, or expanded to two untyped blanks.

       You  can determine the kind of terminal you have by clearing the screen
       and then typing text separated by cursor	 motions.   Type  “abc	  def”
       using  local  cursor  motions  (not  spaces)  between the “abc” and the
       “def”.  Then position the cursor before the “abc” and put the  terminal
       in  insert  mode.   If typing characters causes the rest of the line to
       shift rigidly and characters to fall off the end,  then	your  terminal
       does  not  distinguish  between	blanks	and untyped positions.	If the
       “abc” shifts over to the “def” which then move together around the  end
       of  the current line and onto the next as you insert, you have the sec‐
       ond type of terminal, and should give the capability in,	 which	stands
       for “insert null”.

       While  these  are  two  logically  separate attributes (one line versus
       multi-line insert mode, and special treatment  of  untyped  spaces)  we
       have  seen  no terminals whose insert mode cannot be described with the
       single attribute.

       Terminfo can describe both terminals which have	an  insert  mode,  and
       terminals  which send a simple sequence to open a blank position on the
       current line.  Give as smir the sequence to get into insert mode.  Give
       as  rmir	 the  sequence	to  leave  insert  mode.  Now give as ich1 any
       sequence needed to be sent just before  sending	the  character	to  be
       inserted.   Most	 terminals with a true insert mode will not give ich1;
       terminals which send a sequence to open a screen position  should  give
       it here.

       If  your	 terminal has both, insert mode is usually preferable to ich1.
       Technically, you should not give	 both  unless  the  terminal  actually
       requires	 both to be used in combination.  Accordingly, some non-curses
       applications get confused if both are present; the symptom  is  doubled
       characters  in  an  update using insert.	 This requirement is now rare;
       most ich sequences do not require previous smir, and most  smir	insert
       modes  do  not  require ich1 before each character.  Therefore, the new
       curses actually assumes this is the case and uses either	 rmir/smir  or
       ich/ich1	 as appropriate (but not both).	 If you have to write an entry
       to be used under new curses for a terminal old  enough  to  need	 both,
       include the rmir/smir sequences in ich1.

       If post insert padding is needed, give this as a number of milliseconds
       in ip (a string option).	 Any other sequence which may need to be  sent
       after an insert of a single character may also be given in ip.  If your
       terminal needs both to be placed into an `insert mode'  and  a  special
       code  to	 precede each inserted character, then both smir/rmir and ich1
       can be given, and both will be used.   The  ich	capability,  with  one
       parameter, n, will repeat the effects of ich1 n times.

       If  padding  is	necessary between characters typed while not in insert
       mode, give this as a number of milliseconds padding in rmp.

       It is occasionally necessary to move around while  in  insert  mode  to
       delete  characters  on the same line (e.g., if there is a tab after the
       insertion position).  If your terminal allows motion  while  in	insert
       mode  you  can  give  the  capability mir to speed up inserting in this
       case.  Omitting mir will affect only speed.   Some  terminals  (notably
       Datamedia's)  must  not	have  mir because of the way their insert mode
       works.

       Finally, you can specify dch1 to delete a single	 character,  dch  with
       one  parameter,	n,  to	delete n characters, and delete mode by giving
       smdc and rmdc to enter and exit delete  mode  (any  mode	 the  terminal
       needs to be placed in for dch1 to work).

       A  command  to  erase  n	 characters (equivalent to outputting n blanks
       without moving the cursor) can be given as ech with one parameter.

   Highlighting, Underlining, and Visible Bells
       If your terminal has one or more kinds of display attributes, these can
       be  represented	in  a number of different ways.	 You should choose one
       display form as standout mode,  representing  a	good,  high  contrast,
       easy-on-the-eyes,  format  for  highlighting  error  messages and other
       attention getters.  (If you have a choice,  reverse  video  plus	 half-
       bright  is  good,  or reverse video alone.)  The sequences to enter and
       exit standout mode are given as smso and rmso,  respectively.   If  the
       code  to	 change	 into  or  out of standout mode leaves one or even two
       blank spaces on the screen, as the TVI 912 and Teleray  1061  do,  then
       xmc should be given to tell how many spaces are left.

       Codes to begin underlining and end underlining can be given as smul and
       rmul respectively.  If the terminal has a code to underline the current
       character  and  move  the  cursor  one  space to the right, such as the
       Microterm Mime, this can be given as uc.

       Other capabilities to enter various highlighting	 modes	include	 blink
       (blinking)  bold	 (bold or extra bright) dim (dim or half-bright) invis
       (blanking or invisible text) prot (protected) rev (reverse video)  sgr0
       (turn  off  all	attribute  modes) smacs (enter alternate character set
       mode) and rmacs (exit alternate character set mode).  Turning on any of
       these modes singly may or may not turn off other modes.

       If  there  is  a	 sequence to set arbitrary combinations of modes, this
       should be given as sgr (set attributes),	 taking	 9  parameters.	  Each
       parameter  is either 0 or nonzero, as the corresponding attribute is on
       or off.	The 9 parameters are, in order: standout, underline,  reverse,
       blink,  dim,  bold,  blank,  protect, alternate character set.  Not all
       modes need be supported by sgr, only those for which corresponding sep‐
       arate attribute commands exist.

       For example, the DEC vt220 supports most of the modes:

	      tparm parameter	   attribute	    escape sequence

	      none		   none		    \E[0m
	      p1		   standout	    \E[0;1;7m
	      p2		   underline	    \E[0;4m
	      p3		   reverse	    \E[0;7m
	      p4		   blink	    \E[0;5m
	      p5		   dim		    not available
	      p6		   bold		    \E[0;1m
	      p7		   invis	    \E[0;8m
	      p8		   protect	    not used
	      p9		   altcharset	    ^O (off) ^N (on)

       We  begin each escape sequence by turning off any existing modes, since
       there is no quick way to determine whether they are  active.   Standout
       is  set up to be the combination of reverse and bold.  The vt220 termi‐
       nal has a protect mode, though it is not commonly used in  sgr  because
       it  protects  characters	 on  the screen from the host's erasures.  The
       altcharset mode also is different in  that  it  is  either  ^O  or  ^N,
       depending  on whether it is off or on.  If all modes are turned on, the
       resulting sequence is \E[0;1;4;5;7;8m^N.

       Some sequences are common to different modes.  For example, ;7 is  out‐
       put  when  either  p1  or  p3  is  true, that is, if either standout or
       reverse modes are turned on.

       Writing out the above sequences, along with their dependencies yields

	    sequence		 when to output	     terminfo translation

	    \E[0		 always		     \E[0
	    ;1			 if p1 or p6	     %?%p1%p6%|%t;1%;
	    ;4			 if p2		     %?%p2%|%t;4%;
	    ;5			 if p4		     %?%p4%|%t;5%;
	    ;7			 if p1 or p3	     %?%p1%p3%|%t;7%;
	    ;8			 if p7		     %?%p7%|%t;8%;
	    m			 always		     m
	    ^N or ^O		 if p9 ^N, else ^O   %?%p9%t^N%e^O%;

       Putting this all together into the sgr sequence gives:

	   sgr=\E[0%?%p1%p6%|%t;1%;%?%p2%t;4%;%?%p1%p3%|%t;7%;
	       %?%p4%t;5%;%?%p7%t;8%;m%?%p9%t\016%e\017%;,

       Remember that if you specify sgr, you must also	specify	 sgr0.	 Also,
       some  implementations  rely on sgr being given if sgr0 is, Not all ter‐
       minfo entries necessarily have an sgr string, however.	Many  terminfo
       entries are derived from termcap entries which have no sgr string.  The
       only drawback to adding an sgr string is that termcap also assumes that
       sgr0 does not exit alternate character set mode.

       Terminals  with	the “magic cookie” glitch (xmc) deposit special “cook‐
       ies” when they receive mode-setting sequences, which affect the display
       algorithm  rather than having extra bits for each character.  Some ter‐
       minals, such as the HP 2621, automatically  leave  standout  mode  when
       they  move  to  a  new line or the cursor is addressed.	Programs using
       standout mode should exit standout mode before  moving  the  cursor  or
       sending	a  newline,  unless  the msgr capability, asserting that it is
       safe to move in standout mode, is present.

       If the terminal has a way of flashing the screen to indicate  an	 error
       quietly	(a  bell replacement) then this can be given as flash; it must
       not move the cursor.

       If the cursor needs to be made more visible than normal when it is  not
       on the bottom line (to make, for example, a non-blinking underline into
       an easier to find block or blinking underline) give  this  sequence  as
       cvvis.  If there is a way to make the cursor completely invisible, give
       that as civis.  The capability cnorm should be given which  undoes  the
       effects of both of these modes.

       If  your	 terminal  correctly  generates underlined characters (with no
       special codes needed) even though it  does  not	overstrike,  then  you
       should  give  the  capability  ul.  If a character overstriking another
       leaves both characters on the screen, specify the  capability  os.   If
       overstrikes are erasable with a blank, then this should be indicated by
       giving eo.

   Keypad and Function Keys
       If the terminal has a keypad that transmits codes  when	the  keys  are
       pressed,	 this  information can be given.  Note that it is not possible
       to handle terminals where the keypad only works in local (this applies,
       for  example, to the unshifted HP 2621 keys).  If the keypad can be set
       to transmit or not transmit, give these codes as smkx and rmkx.	Other‐
       wise the keypad is assumed to always transmit.

       The  codes  sent	 by the left arrow, right arrow, up arrow, down arrow,
       and home keys can be given as kcub1, kcuf1,  kcuu1,  kcud1,  and	 khome
       respectively.  If there are function keys such as f0, f1, ..., f10, the
       codes they send can be given as kf0, kf1, ...,  kf10.   If  these  keys
       have  labels  other  than the default f0 through f10, the labels can be
       given as lf0, lf1, ..., lf10.

       The codes transmitted by certain other special keys can be given:

       ·   kll (home down),

       ·   kbs (backspace),

       ·   ktbc (clear all tabs),

       ·   kctab (clear the tab stop in this column),

       ·   kclr (clear screen or erase key),

       ·   kdch1 (delete character),

       ·   kdl1 (delete line),

       ·   krmir (exit insert mode),

       ·   kel (clear to end of line),

       ·   ked (clear to end of screen),

       ·   kich1 (insert character or enter insert mode),

       ·   kil1 (insert line),

       ·   knp (next page),

       ·   kpp (previous page),

       ·   kind (scroll forward/down),

       ·   kri (scroll backward/up),

       ·   khts (set a tab stop in this column).

       In addition, if the keypad has a 3 by 3 array  of  keys	including  the
       four  arrow  keys,  the	other five keys can be given as ka1, ka3, kb2,
       kc1, and kc3.  These keys are useful when the  effects  of  a  3	 by  3
       directional pad are needed.

       Strings to program function keys can be given as pfkey, pfloc, and pfx.
       A string to program screen labels should be specified as pln.  Each  of
       these  strings takes two parameters: the function key number to program
       (from 0 to 10) and the string to program it with.  Function key numbers
       out  of	this  range may program undefined keys in a terminal dependent
       manner.	The difference between the capabilities is that	 pfkey	causes
       pressing	 the  given  key  to  be the same as the user typing the given
       string; pfloc causes the string to  be  executed	 by  the  terminal  in
       local; and pfx causes the string to be transmitted to the computer.

       The  capabilities  nlab,	 lw  and  lh define the number of programmable
       screen labels and their width and height.  If  there  are  commands  to
       turn  the  labels on and off, give them in smln and rmln.  smln is nor‐
       mally output after one or more pln sequences  to	 make  sure  that  the
       change becomes visible.

   Tabs and Initialization
       If  the	terminal has hardware tabs, the command to advance to the next
       tab stop can be given as ht (usually control I).	 A “back-tab”  command
       which moves leftward to the preceding tab stop can be given as cbt.  By
       convention, if the teletype modes indicate that tabs are being expanded
       by the computer rather than being sent to the terminal, programs should
       not use ht or cbt even if they are present, since the user may not have
       the  tab	 stops	properly set.  If the terminal has hardware tabs which
       are initially set every n spaces when the terminal is powered  up,  the
       numeric	parameter  it  is given, showing the number of spaces the tabs
       are set to.  This is normally used by the  tset	command	 to  determine
       whether	to set the mode for hardware tab expansion, and whether to set
       the tab stops.  If the terminal has tab stops that can be saved in non-
       volatile	 memory,  the  terminfo	 description  can assume that they are
       properly set.

       Other capabilities include is1, is2, and	 is3,  initialization  strings
       for  the	 terminal, iprog, the path name of a program to be run to ini‐
       tialize the terminal, and if, the name of a file containing  long  ini‐
       tialization  strings.   These  strings are expected to set the terminal
       into modes consistent with the rest of the terminfo description.	  They
       are  normally sent to the terminal, by the init option of the tput pro‐
       gram, each time the user logs in.  They will be printed in the  follow‐
       ing order:

	      run the program
		     iprog

	      output is1 is2

	      set the margins using
		     mgc, smgl and smgr

	      set tabs using
		     tbc and hts

	      print the file
		     if

	      and finally
		     output is3.

       Most  initialization  is	 done with is2.	 Special terminal modes can be
       set up without duplicating strings by putting the common	 sequences  in
       is2 and special cases in is1 and is3.

       A  set  of  sequences  that  does a harder reset from a totally unknown
       state can be given as rs1, rs2, rf and rs3, analogous to is1 , is2 , if
       and  is3	 respectively.	These strings are output by the reset program,
       which is used when the terminal gets into a wedged state.  Commands are
       normally	 placed	 in  rs1, rs2 rs3 and rf only if they produce annoying
       effects on the screen and are not necessary when logging in.  For exam‐
       ple, the command to set the vt100 into 80-column mode would normally be
       part of is2, but it causes an annoying glitch of the screen and is  not
       normally	 needed	 since	the  terminal  is usually already in 80 column
       mode.

       The reset program writes strings including iprog,  etc.,	 in  the  same
       order  as  the  init program, using rs1, etc., instead of is1, etc.  If
       any of rs1, rs2, rs3, or rf reset capability strings are	 missing,  the
       reset program falls back upon the corresponding initialization capabil‐
       ity string.

       If there are commands to set and clear tab stops, they can be given  as
       tbc (clear all tab stops) and hts (set a tab stop in the current column
       of every row).  If a more complex sequence is needed to	set  the  tabs
       than can be described by this, the sequence can be placed in is2 or if.

   Delays and Padding
       Many  older  and slower terminals do not support either XON/XOFF or DTR
       handshaking, including hard copy terminals and some very	 archaic  CRTs
       (including,  for example, DEC VT100s).  These may require padding char‐
       acters after certain cursor motions and screen changes.

       If the terminal uses xon/xoff handshaking for flow control (that is, it
       automatically  emits  ^S	 back  to  the host when its input buffers are
       close to full), set xon.	 This capability suppresses  the  emission  of
       padding.	  You can also set it for memory-mapped console devices effec‐
       tively that do not have a  speed	 limit.	  Padding  information	should
       still be included so that routines can make better decisions about rel‐
       ative costs, but actual pad characters will not be transmitted.

       If pb (padding baud rate) is given, padding is suppressed at baud rates
       below  the  value  of  pb.  If the entry has no padding baud rate, then
       whether padding is emitted or not is completely controlled by xon.

       If the terminal requires other than a null (zero) character as  a  pad,
       then  this  can	be  given as pad.  Only the first character of the pad
       string is used.

   Status Lines
       Some terminals have an extra `status line' which is not	normally  used
       by software (and thus not counted in the terminal's lines capability).

       The  simplest case is a status line which is cursor-addressable but not
       part of the main scrolling region on the screen; the Heathkit H19 has a
       status  line  of	 this  kind,  as  would a 24-line VT100 with a 23-line
       scrolling region set up on initialization.  This situation is indicated
       by the hs capability.

       Some  terminals	with status lines need special sequences to access the
       status line.  These may be expressed as a string with single  parameter
       tsl  which takes the cursor to a given zero-origin column on the status
       line.  The capability fsl must return to the main-screen	 cursor	 posi‐
       tions  before the last tsl.  You may need to embed the string values of
       sc (save cursor) and rc (restore cursor) in tsl and fsl	to  accomplish
       this.

       The  status  line is normally assumed to be the same width as the width
       of the terminal.	 If this is  untrue,  you  can	specify	 it  with  the
       numeric capability wsl.

       A command to erase or blank the status line may be specified as dsl.

       The  boolean  capability	 eslok	specifies that escape sequences, tabs,
       etc., work ordinarily in the status line.

       The ncurses implementation does not yet use any of these	 capabilities.
       They are documented here in case they ever become important.

   Line Graphics
       Many  terminals have alternate character sets useful for forms-drawing.
       Terminfo and curses build in support for the  drawing  characters  sup‐
       ported  by  the VT100, with some characters from the AT&T 4410v1 added.
       This alternate character set may be specified by the acsc capability.

       Glyph			       ACS		  Ascii		VT100
       Name			       Name		  Default	Name
       UK pound sign		       ACS_STERLING	  f		}
       arrow pointing down	       ACS_DARROW	  v		.
       arrow pointing left	       ACS_LARROW	  <		,
       arrow pointing right	       ACS_RARROW	  >		+
       arrow pointing up	       ACS_UARROW	  ^		-
       board of squares		       ACS_BOARD	  #		h
       bullet			       ACS_BULLET	  o		~
       checker board (stipple)	       ACS_CKBOARD	  :		a
       degree symbol		       ACS_DEGREE	  \		f
       diamond			       ACS_DIAMOND	  +		`

       greater-than-or-equal-to	       ACS_GEQUAL	  >		z
       greek pi			       ACS_PI		  *		{
       horizontal line		       ACS_HLINE	  -		q
       lantern symbol		       ACS_LANTERN	  #		i
       large plus or crossover	       ACS_PLUS		  +		n
       less-than-or-equal-to	       ACS_LEQUAL	  <		y
       lower left corner	       ACS_LLCORNER	  +		m
       lower right corner	       ACS_LRCORNER	  +		j
       not-equal		       ACS_NEQUAL	  !		|
       plus/minus		       ACS_PLMINUS	  #		g
       scan line 1		       ACS_S1		  ~		o
       scan line 3		       ACS_S3		  -		p
       scan line 7		       ACS_S7		  -		r
       scan line 9		       ACS_S9		  _		s
       solid square block	       ACS_BLOCK	  #		0
       tee pointing down	       ACS_TTEE		  +		w
       tee pointing left	       ACS_RTEE		  +		u
       tee pointing right	       ACS_LTEE		  +		t
       tee pointing up		       ACS_BTEE		  +		v
       upper left corner	       ACS_ULCORNER	  +		l
       upper right corner	       ACS_URCORNER	  +		k
       vertical line		       ACS_VLINE	  |		x

       The best way to define a new device's graphics set is to add  a	column
       to  a  copy of this table for your terminal, giving the character which
       (when emitted between smacs/rmacs switches) will	 be  rendered  as  the
       corresponding graphic.  Then read off the VT100/your terminal character
       pairs right to left in sequence; these become the ACSC string.

   Color Handling
       Most color terminals are either `Tektronix-like'	 or  `HP-like'.	  Tek‐
       tronix-like  terminals  have a predefined set of N colors (where N usu‐
       ally 8), and can set character-cell foreground and  background  charac‐
       ters  independently,  mixing  them  into N * N color-pairs.  On HP-like
       terminals, the use must set each color pair up  separately  (foreground
       and  background	are  not independently settable).  Up to M color-pairs
       may be set up from 2*M different colors.	 ANSI-compatible terminals are
       Tektronix-like.

       Some basic color capabilities are independent of the color method.  The
       numeric capabilities colors and pairs specify the  maximum  numbers  of
       colors  and  color-pairs	 that can be displayed simultaneously.	The op
       (original pair) string resets foreground and background colors to their
       default	values	for  the terminal.  The oc string resets all colors or
       color-pairs to their default values for the terminal.   Some  terminals
       (including many PC terminal emulators) erase screen areas with the cur‐
       rent background color rather  than  the	power-up  default  background;
       these should have the boolean capability bce.

       To  change  the	current foreground or background color on a Tektronix-
       type terminal, use setaf (set ANSI  foreground)	and  setab  (set  ANSI
       background)  or setf (set foreground) and setb (set background).	 These
       take one parameter, the color number.  The SVr4 documentation describes
       only  setaf/setab;  the	XPG4 draft says that "If the terminal supports
       ANSI escape sequences to set background and foreground, they should  be
       coded as setaf and setab, respectively.	If the terminal supports other
       escape sequences to set background and foreground, they should be coded
       as setf and setb, respectively.	The vidputs() function and the refresh
       functions use setaf and setab if they are defined."

       The setaf/setab and setf/setb capabilities take a single numeric	 argu‐
       ment  each.  Argument values 0-7 of setaf/setab are portably defined as
       follows (the middle column is the symbolic  #define  available  in  the
       header  for the curses or ncurses libraries).  The terminal hardware is
       free to map these as it likes, but the RGB values indicate normal loca‐
       tions in color space.

		    Color	#define	      Value	  RGB
		    black     COLOR_BLACK	0     0, 0, 0
		    red	      COLOR_RED		1     max,0,0
		    green     COLOR_GREEN	2     0,max,0
		    yellow    COLOR_YELLOW	3     max,max,0
		    blue      COLOR_BLUE	4     0,0,max
		    magenta   COLOR_MAGENTA	5     max,0,max
		    cyan      COLOR_CYAN	6     0,max,max
		    white     COLOR_WHITE	7     max,max,max

       The argument values of setf/setb historically correspond to a different
       mapping, i.e.,

		    Color	#define	      Value	  RGB
		    black     COLOR_BLACK	0     0, 0, 0
		    blue      COLOR_BLUE	1     0,0,max
		    green     COLOR_GREEN	2     0,max,0
		    cyan      COLOR_CYAN	3     0,max,max
		    red	      COLOR_RED		4     max,0,0
		    magenta   COLOR_MAGENTA	5     max,0,max
		    yellow    COLOR_YELLOW	6     max,max,0
		    white     COLOR_WHITE	7     max,max,max

       It is important to not confuse the two sets of color capabilities; oth‐
       erwise red/blue will be interchanged on the display.

       On  an  HP-like terminal, use scp with a color-pair number parameter to
       set which color pair is current.

       On a Tektronix-like terminal, the capability  ccc  may  be  present  to
       indicate that colors can be modified.  If so, the initc capability will
       take a color number (0 to colors - 1)and three  more  parameters	 which
       describe	 the  color.   These  three parameters default to being inter‐
       preted as RGB (Red, Green, Blue) values.	 If the boolean capability hls
       is  present,  they  are	instead	 as  HLS  (Hue, Lightness, Saturation)
       indices.	 The ranges are terminal-dependent.

       On an HP-like terminal, initp may give  a  capability  for  changing  a
       color-pair  value.   It will take seven parameters; a color-pair number
       (0 to max_pairs - 1), and two triples describing first  background  and
       then foreground colors.	These parameters must be (Red, Green, Blue) or
       (Hue, Lightness, Saturation) depending on hls.

       On some color terminals, colors collide with highlights.	 You can  reg‐
       ister  these collisions with the ncv capability.	 This is a bit-mask of
       attributes not to be used when colors are enabled.  The	correspondence
       with the attributes understood by curses is as follows:

		    Attribute			Bit    Decimal
		    A_STANDOUT			0     1
		    A_UNDERLINE			1     2
		    A_REVERSE			2     4
		    A_BLINK			3     8
		    A_DIM			4     16
		    A_BOLD			5     32
		    A_INVIS			6     64
		    A_PROTECT			7     128
		    A_ALTCHARSET		8     256

       For  example, on many IBM PC consoles, the underline attribute collides
       with the foreground color blue and is  not  available  in  color	 mode.
       These should have an ncv capability of 2.

       SVr4  curses does nothing with ncv, ncurses recognizes it and optimizes
       the output in favor of colors.

   Miscellaneous
       If the terminal requires other than a null (zero) character as  a  pad,
       then  this  can	be  given as pad.  Only the first character of the pad
       string is used.	If the terminal does not have a pad character, specify
       npc.   Note that ncurses implements the termcap-compatible PC variable;
       though the application may set this value to  something	other  than  a
       null,  ncurses will test npc first and use napms if the terminal has no
       pad character.

       If the terminal can move up or down half a line, this can be  indicated
       with hu (half-line up) and hd (half-line down).	This is primarily use‐
       ful for superscripts and subscripts on hard-copy terminals.  If a hard-
       copy  terminal  can eject to the next page (form feed), give this as ff
       (usually control L).

       If there is a command to repeat a given character  a  given  number  of
       times  (to  save	 time transmitting a large number of identical charac‐
       ters) this can be indicated with the  parameterized  string  rep.   The
       first  parameter	 is the character to be repeated and the second is the
       number of times to repeat it.  Thus, tparm(repeat_char, 'x', 10) is the
       same as `xxxxxxxxxx'.

       If the terminal has a settable command character, such as the TEKTRONIX
       4025, this can be indicated with cmdch.	A prototype command  character
       is  chosen  which is used in all capabilities.  This character is given
       in the cmdch capability to identify it.	The  following	convention  is
       supported on some UNIX systems: The environment is to be searched for a
       CC variable, and if found, all occurrences of the  prototype  character
       are replaced with the character in the environment variable.

       Terminal	 descriptions  that  do not represent a specific kind of known
       terminal, such as switch, dialup, patch, and  network,  should  include
       the  gn (generic) capability so that programs can complain that they do
       not know how to talk to the terminal.  (This capability does not	 apply
       to  virtual  terminal  descriptions  for which the escape sequences are
       known.)

       If the terminal has a “meta key” which acts as a shift key, setting the
       8th  bit	 of any character transmitted, this fact can be indicated with
       km.  Otherwise, software will assume that the 8th bit is parity and  it
       will  usually be cleared.  If strings exist to turn this “meta mode” on
       and off, they can be given as smm and rmm.

       If the terminal has more lines of memory than will fit on the screen at
       once,  the number of lines of memory can be indicated with lm.  A value
       of lm#0 indicates that the number of lines is not fixed, but that there
       is still more memory than fits on the screen.

       If  the terminal is one of those supported by the UNIX virtual terminal
       protocol, the terminal number can be given as vt.

       Media copy strings which control an auxiliary printer connected to  the
       terminal	 can  be  given as mc0: print the contents of the screen, mc4:
       turn off the printer, and mc5: turn on the printer.  When  the  printer
       is  on,	all text sent to the terminal will be sent to the printer.  It
       is undefined whether the text is also displayed on the terminal	screen
       when  the  printer  is  on.   A variation mc5p takes one parameter, and
       leaves the printer on for as many characters as the value of the param‐
       eter, then turns the printer off.  The parameter should not exceed 255.
       All text, including mc4, is transparently passed to the	printer	 while
       an mc5p is in effect.

   Glitches and Braindamage
       Hazeltine  terminals, which do not allow `~' characters to be displayed
       should indicate hz.

       Terminals which ignore a line-feed immediately after an am  wrap,  such
       as the Concept and vt100, should indicate xenl.

       If  el  is  required  to get rid of standout (instead of merely writing
       normal text on top of it), xhp should be given.

       Teleray terminals, where tabs turn all characters moved over to blanks,
       should  indicate	 xt (destructive tabs).	 Note: the variable indicating
       this is now `dest_tabs_magic_smso'; in  older  versions,	 it  was  tel‐
       eray_glitch.  This glitch is also taken to mean that it is not possible
       to position the cursor on top of a “magic cookie”, that to erase stand‐
       out  mode  it  is instead necessary to use delete and insert line.  The
       ncurses implementation ignores this glitch.

       The Beehive Superbee, which is unable to correctly transmit the	escape
       or  control  C  characters, has xsb, indicating that the f1 key is used
       for escape and f2 for control C.	 (Only	certain	 Superbees  have  this
       problem,	 depending on the ROM.)	 Note that in older terminfo versions,
       this capability was called `beehive_glitch'; it is now `no_esc_ctl_c'.

       Other specific terminal problems may be corrected by adding more	 capa‐
       bilities of the form xx.

   Similar Terminals
       If  there  are  two  very  similar  terminals, one (the variant) can be
       defined as being just like the other (the  base)	 with  certain	excep‐
       tions.  In the definition of the variant, the string capability use can
       be given with the name of the base terminal.   The  capabilities	 given
       before  use override those in the base type named by use.  If there are
       multiple use capabilities, they are merged in reverse order.  That  is,
       the  rightmost  use  reference  is processed first, then the one to its
       left, and so forth.  Capabilities given explicitly in the  entry	 over‐
       ride those brought in by use references.

       A capability can be canceled by placing xx@ to the left of the use ref‐
       erence that imports it, where xx is the capability.  For	 example,  the
       entry

	      2621-nl, smkx@, rmkx@, use=2621,

       defines a 2621-nl that does not have the smkx or rmkx capabilities, and
       hence does not turn on the function key labels  when  in	 visual	 mode.
       This  is	 useful	 for  different modes for a terminal, or for different
       user preferences.

   Pitfalls of Long Entries
       Long terminfo entries are unlikely to be a problem; to date,  no	 entry
       has  even approached terminfo's 4096-byte string-table maximum.	Unfor‐
       tunately, the termcap translations are much more strictly  limited  (to
       1023  bytes),  thus  termcap  translations of long terminfo entries can
       cause problems.

       The man pages for 4.3BSD and older versions of tgetent()	 instruct  the
       user  to	 allocate a 1024-byte buffer for the termcap entry.  The entry
       gets null-terminated by the termcap library, so that makes the  maximum
       safe  length  for a termcap entry 1k-1 (1023) bytes.  Depending on what
       the application and the termcap library being used does, and  where  in
       the  termcap file the terminal type that tgetent() is searching for is,
       several bad things can happen.

       Some termcap libraries print a warning message or exit if they find  an
       entry that's longer than 1023 bytes; others do not; others truncate the
       entries to 1023 bytes.  Some application programs  allocate  more  than
       the recommended 1K for the termcap entry; others do not.

       Each  termcap  entry has two important sizes associated with it: before
       "tc" expansion, and after "tc" expansion.  "tc" is the capability  that
       tacks on another termcap entry to the end of the current one, to add on
       its capabilities.  If a termcap entry does not use the "tc" capability,
       then of course the two lengths are the same.

       The  "before tc expansion" length is the most important one, because it
       affects more than just users of that particular terminal.  This is  the
       length  of the entry as it exists in /etc/termcap, minus the backslash-
       newline pairs, which tgetent() strips out while reading it.  Some term‐
       cap  libraries strip off the final newline, too (GNU termcap does not).
       Now suppose:

       ·   a termcap entry before expansion is more than 1023 bytes long,

       ·   and the application has only allocated a 1k buffer,

       ·   and the termcap library (like the one in BSD/OS 1.1 and GNU)	 reads
	   the	whole entry into the buffer, no matter what its length, to see
	   if it is the entry it wants,

       ·   and tgetent() is searching for a terminal type that either  is  the
	   long	 entry,	 appears  in the termcap file after the long entry, or
	   does not appear in the file at all (so that tgetent() has to search
	   the whole termcap file).

       Then  tgetent()	will overwrite memory, perhaps its stack, and probably
       core dump the program.  Programs like telnet are particularly  vulnera‐
       ble;  modern telnets pass along values like the terminal type automati‐
       cally.  The results are almost as undesirable with a  termcap  library,
       like  SunOS  4.1.3 and Ultrix 4.4, that prints warning messages when it
       reads an overly long termcap entry.  If	a  termcap  library  truncates
       long  entries,  like  OSF/1  3.0,  it  is immune to dying here but will
       return incorrect data for the terminal.

       The "after tc expansion" length will  have  a  similar  effect  to  the
       above, but only for people who actually set TERM to that terminal type,
       since tgetent() only does "tc" expansion once it is found the  terminal
       type it was looking for, not while searching.

       In  summary,  a termcap entry that is longer than 1023 bytes can cause,
       on various combinations of termcap libraries and applications,  a  core
       dump,  warnings, or incorrect operation.	 If it is too long even before
       "tc" expansion, it will have this effect even for users of  some	 other
       terminal	 types	and  users whose TERM variable does not have a termcap
       entry.

       When in -C (translate to termcap) mode, the ncurses  implementation  of
       tic(1M)	issues	warning	 messages  when the pre-tc length of a termcap
       translation is too long.	 The -c (check) option	also  checks  resolved
       (after tc expansion) lengths.

   Binary Compatibility
       It  is  not  wise  to  count  on portability of binary terminfo entries
       between commercial UNIX versions.  The problem is  that	there  are  at
       least  two  versions  of	 terminfo (under HP-UX and AIX) which diverged
       from System V terminfo after SVr1, and have added  extension  capabili‐
       ties  to the string table that (in the binary format) collide with Sys‐
       tem V and XSI Curses extensions.

EXTENSIONS
       Searching  for  terminal	 descriptions  in  $HOME/.terminfo  and	  TER‐
       MINFO_DIRS is not supported by older implementations.

       Some  SVr4  curses  implementations,  and  all previous to SVr4, do not
       interpret the %A and %O operators in parameter strings.

       SVr4/XPG4 do not specify whether msgr licenses  movement	 while	in  an
       alternate-character-set	mode  (such modes may, among other things, map
       CR and NL to characters	that  do  not  trigger	local  motions).   The
       ncurses	implementation	ignores	 msgr in ALTCHARSET mode.  This raises
       the possibility that an XPG4 implementation making the opposite	inter‐
       pretation  may  need  terminfo  entries	made  for ncurses to have msgr
       turned off.

       The ncurses library handles insert-character and insert-character modes
       in  a  slightly	non-standard way to get better update efficiency.  See
       the Insert/Delete Character subsection above.

       The parameter substitutions for set_clock  and  display_clock  are  not
       documented  in  SVr4 or the XSI Curses standard.	 They are deduced from
       the documentation for the AT&T 505 terminal.

       Be careful assigning the kmous capability.  The ncurses wants to inter‐
       pret  it	 as  KEY_MOUSE,	 for use by terminals and emulators like xterm
       that  can  return  mouse-tracking  information  in  the	keyboard-input
       stream.

       Different  commercial  ports  of	 terminfo and curses support different
       subsets of the XSI Curses standard and (in some cases) different exten‐
       sion sets.  Here is a summary, accurate as of October 1995:

       SVR4, Solaris, ncurses -- These support all SVr4 capabilities.

       SGI  --	Supports  the  SVr4 set, adds one undocumented extended string
       capability (set_pglen).

       SVr1, Ultrix -- These support a restricted subset of terminfo capabili‐
       ties.   The  booleans  end  with xon_xoff; the numerics with width_sta‐
       tus_line; and the strings with prtr_non.

       HP/UX  --  Supports  the	 SVr1  subset,	plus  the  SVr[234]   numerics
       num_labels,  label_height,  label_width,	 plus function keys 11 through
       63, plus plab_norm, label_on, and  label_off,  plus  some  incompatible
       extensions in the string table.

       AIX -- Supports the SVr1 subset, plus function keys 11 through 63, plus
       a number of incompatible string table extensions.

       OSF -- Supports both the SVr4 set and the AIX extensions.

FILES
       /usr/share/terminfo/?/*	files containing terminal descriptions

SEE ALSO
       tic(1M),	 infocmp(1M),  curses(3X),  printf(3),	term(5).    term_vari‐
       ables(3X).

AUTHORS
       Zeyd M. Ben-Halim, Eric S. Raymond, Thomas E. Dickey.  Based on pcurses
       by Pavel Curtis.

								   terminfo(5)
[top]

List of man pages available for Oracle

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]
Tweet
Polarhome, production since 1999.
Member of Polarhome portal.
Based on Fawad Halim's script.
....................................................................
Vote for polarhome
Free Shell Accounts :: the biggest list on the net