
XENIX® System V 

Operating System 

User's Guide 





Information in this document is subject to change without notice and does not represent 
a commitment on the part of The Santa Cruz Operation, Inc. nor Microsoft Corporation. 
The software described in this document is furnished under a license agreement or 
nondisclosure agreement. The software may be used or copied only in accordance with 
the terms of the agreement. It is against the law to copy this software on magnetic tape, 
disk, or any other medium for any purpose other than the purchaser's personal use. 

Portions © 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988 Microsoft 
Corporation. 
All rights reserved. 
Portions © 1983, 1984, 1985, 1986, 1987, 1988 The Santa Cruz Operation, Inc. 
All rights reserved. 

ALL USE, DUPLICATION, OR DISCLOSURE WHATSOEVER BY THE 
GOVERNMENT SHALL BE EXPRESSLY SUBJECT TO RESTRICTIONS AS SET 
FORTH IN SUBDIVISION (b) (3) (ii) FOR RESTRICTED RIGHTS IN COMPUTER 
SOFTWARE AND SUBDIVISION (b) (2) FOR LIMITED RIGHTS IN TECHNICAL 
DATA, BOTH AS SET FORTH IN FAR 52.227-7013. 

Microsoft, MS-DOS, and XENIX are trademarks of Microsoft Corporation. 

sca Document Number: XG-5-16-88-S.0 



( 

\ 



Contents 

1 Introduction 

1.1 Overview 1-1 
1.2 About This Guide 1-1 
1.3 Notational Conventions 1-2 

2 vi: A Text Editor 

2.1 Introduction 2-1 
2.2 Demonstration 2-1 
2.3 Editing Tasks 2-17 
2.4 Solving Common Problems 2-55 
2.5 Setting Up Your Environment 2-56 
2.6 Summary of Commands 2-62 

3 ed 

3.1 Introduction 3-1 
3.2 Demonstration 3-1 
3.3 Basic Concepts 3-2 
3.4 Tasks 3-3 
3.5 Context and Regular Expressions 3-33 
3.6 SpeedingUpEditing 3-51 
3.7 Cutting and Pasting with the editor 3-56 
3.8 Editing Scripts 3-59 
3.9 Summary of Commands 3-60 

4 mail 

4.1 Introduction 4-1 
4.2 Demonstration 4-2 
4.3 Basic Concepts 4-5 
4.4 Using mail 4-10 
4.5 Commands 4-17 
4.6 Leaving Compose Mode Temporarily 4-27 
4.7 Setting Up Your Environment: The .mailrc File 4-32 
4.8 Using Advanced Features 4-36 
4.9 Quick Reference 4-40 

5 Communicating with Other Sites 

5.1 Introduction 5-1 
5 .2 Using Micnet 5-1 

-i-



5.3 UsingUUCP 5-5 
5.4 Logging in to Remote Systems 5-15 / 

6 be: A Calculator \. 

6.1 Introduction 6-1 
6.2 Demonstration 6-1 
6.3 Tasks 6-4 
6.4 Language Reference 6-15 

7 The Shell 

7.1 Introduction 7-1 
7.2 Basic Concepts 7-2 
7.3 Shell Variables 7-10 
7.4 The Shell State 7-17 
7.5 A Command's Environment 7-19 
7.6 InvokingtheShell 7-20 
7.7 Passing Arguments to Shell Procedures 7 -21 
7.8 Controlling the Flow of Control 7-23 
7.9 Special Shell Commands 7-38 
7.10 Creation and Organization of Shell Procedures 7 -41 
7.11 More About Execution Flags 7 -43 
7.12 Supporting Commands and Features 7 -43 
7.13 Effective and Efficient Shell Programming 7-51 
7.14 Shell Procedure Examples 7-55 
7.15 Shell Grammar 7 -64 

8 The C-Shell 

8.1 Introduction 8-1 
8.2 Invoking the C-shell 8-1 
8.3 Using Shell Variables 8-2 
8.4 U sing the C-Shell History List 8-5 
8.5 Using Aliases 8-7 
8.6 Redirecting Input and Output 8-8 
8.7 Creating Background and Foreground Jobs 8-9 
8.8 Using Built-In Commands 8-10 
8.9 Creating Command Scripts 8-12 
8.10 UsingtheargvVariable 8-12 
8.11 Substituting Shell Variables 8-13 
8.12 Using Expressions 8-15 
8.13 Using the C-Shell: A Sample Script 8-16 
8.14 Using Other Control Structures 8-19 
8.15 Supplying Input to Commands 8-20 
8.16 Catching Interrupts 8-21 
8 .17 Using Other Features 8-21 
8.18 Starting a Loop at a Terminal 8~ 21 

-11-



8.19 Using Braces with Arguments 8-23 
8.20 Substituting Commands 8-23 
8.21 Special Characters 8-24 

9 Using The Visual Shell 

9.1 What is the Visual Shell? 9-1 
9.2 Getting Started with the Visual Shell 9-2 
9.3 The Visual Shell Screen 9-3 
9.4 Visual Shell Reference 9-7 

- iii-



( 



Chapter 1 

Introduction 

1.1 Overview 1-1 

1.2 About This Guide 1-1 

1.3 Notational Conventions 1-2 



! 
l 

" 



1.1 Overview 

This guide provides extensive information on several of the most useful 
XENIX facilities, including mail, the vi and ed text editors, llllep, mienet 
and be, the XENIX "desktop calculator. ' , In addition, the guide includes 
information on the three XENIX "shells": the Bourne shell, the C shell 
and the Visual shell. 

1.2 About This Guide 

This guide is organized as follows: 

Chapter 1, "Introduction," provides an overview of the contents of this 
guide and gives a list of the notational conventions used throughout. 

Chapter 2, "vi: A Text Editor" explains how to use the XENIX fullscreen 
editor, vi. 

Chapter 3, "ed" explains how to use the XENIX line editor, ed. 

Chapter 4, "mail," explains how to use the XENIX electronic mail facil­
ity. 

Chapter 5, "Communicating with Other Sites," explains how to transfer 
files to and from and how to execute commands on other computer sites. 
These other sites might be XENIX or UNIX sites, but they do not need to 
be. They can, for instance, be MS-DOSTM sites. 

Chapter 6, "bc: A Calculator," explains how to use be, a sophisticated 
calculator program. 

Chapter 7, "The Shell," explains how to use the powerful features of the 
XENIX Bourne shell. 

Chapter 8, "The C-Shell," explains how to use the powerful features of 
the XENIX C shell. 

Chapter 9, "Using The Visual Shell," explains how to use the menu­
driven Visual shell. 

1-1 



XENIX User's Guide 

1.3 Notational CORventions 

This guide uses a number of notational conventions to describe the syntax 
of XENIX commands: 

Initial Capitals 

boldface 

italics 

screen font 

1-2 

Initial Capitals indicate the name of a com­
mand or mode. When a command is intro­
duced it is followed by the keystroke that 
invokes it, (i.e. the Insert (i) command). 

Boldface indicates a command, option, flag, 
or program name to be entered as shown. 
Keystrokes are boldfaced when they indi­
cate a command to enter as shown, (i.e. 
enter the i command and press RETURN). 

Boldface indicates the name ofaXENIX 
utility or library routine. (To find more 
information on a given utility, consult the 
" Alphabetized List' , in the appropriate 
Reference for the manual page that 
describes it.) 

Italics indicate a filename. This pertains to 
library include filenames (i.e. stdio.h), as 
well as, other filenames (i.e. letclttys). 

Italics indicate a placeholder for a com­
mand argument. When entering a command, 
a placeholder must be replaced with an 
appropriate filename, number, or option. 

Italics indicate a specific identifier, supplied 
for variables and functions, when mentioned 
in text. 

Italics indicate a reference to part of an 
example. 

Italics indicate emphasized words or 
phrases in text. 

This font is used for screen displays and 
messages. 



[ ] 

Introduction 

Brackets indicate that the enclosed item is 
optional. If you do not use the optional 
item, the program selects a default action to 
carry out. 

Brackets indicate the position of the cursor 
in text examples. 

Ellipses indicate that you can repeat the 
preceding item any number of times. 

Vertical ellipses indicate that a portion of a 
program example is omitted. 

Quotation marks indicate the first use of a 
technical term. 

Quotation marks indicate a reference to a 
word rather than a command. 

1-3 





Chapter 2 

vi: A Text Editor 

2.1 Introduction 2-1 

2.2 Demonstration 2-1 
2.2.1 Entering the Editor 2-2 
2.2.2 Inserting Text 2-2 
2.2.3 Repeating a Command 2-3 
2.2.4 Undoing a Command 2-4 
2.2.5 Moving the Cursor 2-5 
2.2.6 Deleting 2-6 
2.2.7 Searching for a Pattern 2-9 
2.2.8 Searching and Replacing 2·11 
2.2.9 Leaving vi 2-13 
2.2.10 Adding Text From Another File 2-13 
2.2.11 Leaving vi Temporarily 2-14 
2.2.12 Changing Your Display 2-15 
2.2.13 Canceling an Editing Session 2-16 

2.3 Editing Tasks 2-17 
2.3.1 How to Enter the Editor 2-17 
2.3.2 Moving the Cursor 2-18 
2.3.3 Moving Around in a File: Scrolling 2-21 
2.3.4 Inserting Text Before the Cursor: i and I 2-22 
2.3.5 Appending After the Cursor: a and A 2-23 
2.3.6 Correcting Typing Mistakes 2-24 
2.3.7 Opening a New Line 2-24 
2.3.8 Repeating the Last Insertion 2-24 
2.3.9 Inserting Text From Other Files 2-24 
2.3.10 Inserting Control Characters into Text 2-29 
2.3.11 Joining and Breaking Lines 2-29 
2.3.12 Deleting a Character: x and X 2-29 
2.3.13 Deleting a Word: dw 2-30 
2.3.14 Deleting a Line: D and dd 2-30 
2.3.15 Deleting an Entire Insertion 2-31 
2.3.16 Deleting and Replacing Text 2-31 
2.3.17 Moving Text 2-35 
2.3.18 Searching: / and? 2-39 



2.3.19 Searching and Replacing 2-41 
2.3 .20 Pattern Matching 2-43 
2.3.21 Undoing a Command: u 2-46 
2.3.22 Repeating a Command:. 2-48 
2.3.23 Leaving the Editor 2-48 
2.3.24 Editing a Series of Files 2-50 
2.3.25 Editing a New File Without Leaving the Editor 2-52 
2.3.26 Leaving the Editor Temporarily: Shell Escapes 2-52 
2.3.27 Performing a Series of Line-Oriented Commands: Q 2-53 
2.3.28 Finding Out What File You're In 2-54 
2.3.29 Finding Out What Line You're On 2-55 

2.4 Solving Common Problems 2-55 

2.5 Setting Up Your Environment 2-56 
2.5.1 Setting the Terminal Type 2-57 
2.5.2 Setting Options: The set Command 2-58 
2.5.3 Displaying Tabs and End-of-Line: list 2-59 
2.5.4 Ignoring Casein Search Commands: ignorecase 2-59 
2.5.5 Displaying Line Numbers: number 2-59 
2.5.6 Printing the Number of Lines Changed: report 2-59 
2.5.7 Changing the Terminal Type:term 2-60 
2.5.8 Shortening Error Messages: terse 2-60 
2.5.9 Thming Off Warnings: warn 2-60 
2.5.10 Pennitting Special Characters in Searches: nomagic 2-61 
2.5.11 Limiting Searches: wrapscan 2-61 
2.5.12 ThrningonMessages: mesg 2-61 
2.5.13 Customizing Your Environment: The .exrc File 2-61 

2.6 Summary of Commands 2-62 



2.1 Introduction 

Any ASCII text file, such as a program or document, may be created and 
modified using a text editor. There are two text editors available on the 
XENIX system, ed and vi. ed is discussed in the "ed" chapter of this 
manual. 

vi (which stands for "visual") combines line-oriented and screen­
oriented features into a powerful set of text editing operations that will 
satisfy any text editing need. 

The first part of this chapter is a demonstration that gives you some 
hands-on experience with vi. It introduces the basic concepts you must be 
familiar with before you can really learn to use vi, and shows you how to 
perform simple editing functions. The second part is a reference that 
shows you how to perform specific editing tasks. The third part describes 
how to set up your vi environment and how to set optional features. The 
fourth part is a summary of commands. 

Because vi is such a powerful editor, it has many more commands than 
you can learn at one sitting. If you have not used a text editor before, the 
best approach is to become thoroughly comfortable with the concepts and 
operations presented in the demonstration section, then refer to the 
second part for specific tasks you need to perform. All the steps needed to 
perform a given task are explained in each section, so some information is 
repeated several times. When you are familiar with the basic vi com­
mands you can easily learn how to use the more advanced features. 

If you have used a text editor before, you may want to turn directly to the 
task-oriented part of this chapter. Begin by learning the features you will 
use most often. If you are an experienced user of vi you may prefer to use 
vi(C) in the XENIX User's Reference instead of this chapter. 

This chapter covers the basic text editing features of vi. For more 
advanced topics, and features related to editing programs, refer to vice) in 
the XENIX User's Reference. 

2.2 Demonstration 

The following demonstration gives you hands-on experience using vi, and 
introduces some basic concepts that you must understand before you can 
learn more advanced features. You will learn how to enter and exit the 
editor, insert and delete text, search for patterns and replace them, and 
how to insert text from other files. This demonstration should take one 
hour. Remember that the best way to learn vi is to actually use it, so don't 
be afraid to experiment. 

2-1 



XENIX User's Guide 

Before you start the demonstration, make sure that your terminal has been 
properly set up. See the section "Setting the Terminal Type," for more 
information about setting up your terminal for use with vi. 

2.2.1 Entering the Editor 

To enter the editor and create a file named temp, enter: 

vi temp 

Your screen will look like this: 

"temp" [New file] 

Note that we show a twelve-line screen to save space. In reality, vi uses 
whatever size screen you have. 

You are initially editing a copy of the file. The file itself is not altered 
until you save it. Saving a file is explained later in the demonstration. 
The top line of your display is the only line in the file and is marked by 
the cursor, shown above as an underline character. In this chapter, when 
the cursor is on a character that character will be enclosed in square 
brackets ([]). 

The line containing the cursor is called the current line. The lines con­
taining tildes are not part of the file: they indicate lines on the screen 
only, not real lines in the file. 

2.2.2 Inserting Text 

To hegin, create some text in the file temp by using the Insert (i) com­
mand. To do this, press: 

2-2 



vi: A Text Editor 

Next, enter the following five lines to give yourself some text to experi­
ment with. Press RETURN at the end of each line. If you make a mistake, 
use the BKSP key to erase the error and enter the word again. 

Files contain text. 
Text contains lines. 
Lines contain characters. 
Characters form words. 
Words form text. 

Press the ESCAPE key (abbreviated ESC) when you are finished. 

Like most vi commands, the i command is not shown (or "echoed") on 
your screen. The command itself switches you from Command mode to 
Insert mode. 

When you are in Insert mode every character you enter is displayed on the 
screen. In Command mode the characters you enter are not placed in the 
file as text; they are interpreted as commands to be executed on the file. If 
you are not certain which mode you are in, press ESC until you hear the 
bell. When you hear the bell you are in Command mode. 

Once in Insert mode, the characters you enter are inserted into the file; 
they are not interpreted as vi commands. To exit Insert mode and reenter 
Command mode you will always press ESC. This switching between 
modes occurs often in vi, and it is important to get used to it now. 

2.2.3 Repeating a Command 

Next comes a command that you will use frequently in vi: the Repeat 
command. The Repeat command repeats the most recent Insert or Delete 
command. Since we have just executed an Insert command, the Repeat 
command repeats the insertion, duplicating the inserted text. The Repeat 
command is executed by entering a period (.) or "dot" . So, to add five 
more lines of text, enter" .". The Repeat command is repeated relative to 
the location of the cursor and inserts text below the current line. 
(Remember, the current line is always the line containing the cursor.) 

2-3 



XENIX User's Guide 

After you enter dot (.), your screen will look like this: 

Files contain text. 
Text contains lines. 
Lines contain characters. 
Characters form words. 
Words form text. 
Files contain text. 
Text contains lines. 
Lines contain characters. 
Characters form words. 
Words form text. 

2.2.4 Undoing a Command 

Another command which is very useful (and which you will need often in 
the beginning) is the Undo (u) command. Press 

u 

and notice that the five lines you just finished inserting are deleted or 
"undone". 

Files contain text. 
Text contains lines. 
Lines contain characters. 
Characters form words. 
Words form text. 

Now enter: 

u 

again, and the five lines are reinserted! This undo feature can be very 
useful in recovering from inadvertent deletions or insertions. 

2-4 



vi: A Text Editor 

2.2.5 Moving the Cursor 

Now let's learn how to move the cursor around on the screen. In addition 
to the arrow keys, the following letter keys also control the cursor: 

h Left 

Right 

k Up 

j Down 

The letter keys are chosen because of their relative positions on the key­
board. Remember that the cursor movement keys only work in Command 
mode. 

Try moving the cursor using these keys. (First make sure you are in Com­
mand mode by pressing the ESC key.) Then, enter the H command to 
place the cursor in the upper left comer of the screen. Then enter the L 
command to move to the lowest line on the screen. (Note that case is 
significant in our example: L moves to the lowest line on the screen; 
while I moves the cursor forward one character.) Next, try moving the 
cursor to the last line in the file with the goto command, G. If you enter 
2G, the cursor moves to the beginning of the second line in the file; if you 
have a 10,000 line file, and enter 8888G, the cursor goes to the beginning 
of line 8888. (If you ~ave a 600 line file and enter 800G the cursor does 
not move.) 

These cursor movement commands should allow you to move around well 
enough for this demonstration. Other cursor movement commands you 
might want to tryout are: 

w Moves forward a word 

b Backs up a word 

o Moves to the beginning of a line 

$ Moves to the end of a line 

You can move through many lines quickly with the scrolling commands: 

Ctrl-u Scrolls up 1/2 screen 

Ctd-d Scrolls down 1/2 screen 

2-5 



XENIX User's Guide 

Ctrl-f Scrolls forward one screenful 

Ctrl-b Scrolls backward one screenful 

2.2.6 Deleting 

N ow that we know how to insert and create text, and how to move around 
within the file, we are ready to delete text. Many Delete commands can 
be combined with cursor movement commands, as explained below. The 
most common Delete commands are: 

dd Deletes the current line (the line the cursor is on), 
regardless of the location of the cursor in the line. 

dw Deletes the word above the cursor. If the cursor is in the 
middle of the word, deletes from the cursor to the end of 
the word. 

x Deletes the character above the cursor. 

d$ Deletes from the cursor to the end of the line. 

D Deletes from the cursor to the end of the line. 

dO Deletes from the cursor to the start of the line. 

Repeats the last change. (Use this only if your last com­
mand was a deletion.) 

To learn how all these commands work, we will delete various parts of 
the demonstration file. To begin, press ESC to make sure you are in Com­
mand mode, then move to the first line of the file by entering: 

10 

2-6 



At first, your file should look like this: 

[F]iles contain text. 
Text contains lines. 
Lines contain characters. 
Characters form words. 
Words form text. 
Files contain text. 
Text contains lines. 
Lines contain characters. 
Characters form words. 
Words form text. 

To delete the first line, enter: 

dd 

Your file should now look like this: 

[T]ext contains lines. 
Lines contain characters. 
Characters form words. 
Words form text. 
Files contain text. 
Text contains lines. 
Lines contain characters. 
Characters form words. 
Words form text. 

Delete the word the cursor is sitting on by entering: 

dw 

vi: A Text Editor 

2-7 



XENIX User's Guide 

After deleting, your file should look like this: 

[c]ontains lines. 
Lines contain characters. 
Characters form words. 
Words form text. 
Files contain text. 
Text contains lines. 
Lines contain characters. 
Characters form words. 
Words form text. 

You can quickly delete the character above the cursor by pressing: 

x 

This leaves: 

[o]ntains lines. 
Lines contain characters. 
Characters form words. 
Words form text. 
Files contain text. 
Text contains lines. 
Lines contain characters. 
Characters form words. 
Words form text. 

Now enter a w command to move your cursor to the beginning of the 
word lines on the first line. Then, to delete to the end of the line, enter: 

d$ 

2-8 



Your file looks like this: 

ontains 
Text contains lines. 
Lines contain characters. 
Characters form words. 
Words form text. 
Files contain text. 
Text contains lines. 
Lines contain characters. 
Characters form words. 
Words form text. 

vi: A Text Editor 

To delete all the characters on the line before the cursor enter: 

dO 

This leaves a single space on the line: 

Lines contain characters. 
Files contain text. 
Text contains lines. 
Characters form words. 
Words form text. 
Lines contain characters. 
Characters form words. 
Words form text. 

For review, let's restore the first two lines of the file. 

Press i to enter Insert mode, then enter: 

Files contain text. 
Text contains lines. 

Press ESC to go back to Command mode. 

2.2.7 Searching for a Pattern 

You can search forward for a pattern of characters by entering a slash (f) 
followed by the pattern you are searching for, terminated by a RETURN. 

2-9 



XENIX User's Guide 

For example, make sure you are in Command mode (press ESC), then 
press 

H 

to move the cursor to the top of the screen. Now, enter: 

/char 

Do not press RETURN yet. Your screen should look like this: 

Files contain text. 
Text contains lines. 
Lines contain characters. 
Characters form words. 
Words form text. 
Files contain text. 
Text contains lines. 
Lines contain characters. 
Characters form words. 
Words form text. 

Press RETURN. The cursor moves to the beginning of the word charac­
ters on line three. To search for the next occurrence of the pattern char, 
press n (as in "next") . This will take you to the beginning of the word 
characters on the eighth line. If you keep pressing "n" vi searches past 
the end of the file, wraps around to the beginning, and again finds the char 
on line. three. 

Note that the slash character and the pattern that you are searching for 
appear at the bottom of the screen. This bottom line is the vi status line. 

The status line appears at the bottom of the screen. It is used to display 
information, including patterns YDU are searching for, line-oriented com­
mands (explained later in this demonstr<ltion), and error messages. 

2-10 



vi: A Text Editor 

For example, to get status information about the file, press Ctrl-g. Your 
screen should look like this: 

Files contain text. 
Text contains lines. 
Lines contain characters. 
Characters form words. 
Words form text. 
Files contain text. 
Text contains lines. 
Lines contain [c]haracters. 
Characters form words. 
Words form text. 

"temp" [Modified] line 4 of 10 --4%--

The status line on the bottom tells you the name of the file you are edit­
ing, whether it has been modified, the current line number, the number of 
lines in the file, and your location in the file as a percentage of the number 
of lines in the file. The status line disappears as you continue working. 

2.2.8 Searching and Replacing 

Let's say you want to change all occurrences of text in the demonstration 
file to documents. Rather than search for text " then delete it and insert 
documents, you can do it all in one command. The commands you have 
learned so far have all been screen-oriented. Commands that can perform 
more than one action (searching and replacing) are line-oriented com­
mands. 

Screen-oriented commands are executed at the location of the cursor. You 
do not need to tell the computer where to perform the operation; it takes 
place relative to the cursor. Line-oriented commands require you to 
specify an exact location (called an "address") where the operation is to 
take place. Screen-oriented commands are easy to enter, and provide 
immediate feedback; the change is displayed on the screen. Line­
oriented commands are more complicated to enter, but they can be exe­
cuted independent of the cursor, and in more than one place in a file at a 
time. 

All line-oriented commands are preceded by a colon which acts as a 
prompt on the status line. Line-oriented commands themselves are 
entered on this line and temiinated with a RETURN. 

2-11 



XENIX User's Guide 

In this chapter, all instructions for line-oriented commands will include 
the colon as part of the command. 

To change text to documents, press ESC to make sure you are in Com­
mand mode, then enter: 

: 1,$s/text/documents/g 

This command means "From the first line (1) to the end of the file ($), 
find text and replace it with documents (s/text/documents/) everywhere it 
occurs on each line (g)". 

Press RETURN. Your screen should look like this: 

Files contain documents. 
Text contains lines. 
Lines contain characters. 
Characters form words. 
Words form documents. 
Files contain documents. 
Text contains lines. 
Lines contain characters. 
Characters form words. 
[W]ords form documents. 

Note that Text in lines two and eight was not changed. Case is significant 
in searches. 

Just for practice, use the Undo command to change documents back to 
text. Press: 

u 

2-12 

( 



Your screen now looks like this: 

[FJiles contain text. 
Text contains lines. 
Lines contain characters. 
Characters form words. 
Words form text. 
Files contain text. 
Text contains lines. 
Lines contain characters. 
Characters form words. 
Words form text. 

2.2.9 Leaving vi 

vi: A Text Editor 

All of the editing you have been doing has affected a copy of the file, and 
not the file named temp that you specified when you invoked vi. To save 
the changes you have made, exit the editor and return to the XENIX shell, 
enter: 

:x 

Remember to press RETURN. The name of the file, and the number of 
lines and characters it contains are displayed on the status line: 

"temp" [New fileJ 10 lines, 214 characters 

Then the XENIX prompt appears. 

2.2.10 Adding Text From Another File 

In this section we will create a new file, and insert text into it from 
another file. First, create a new file named practice by entering: 

vi practice 

2-13 



XENIX User's Guide 

This file is empty. Let's copy the text from temp and put it in practice 
with the line-oriented Read command. Press ESC to make sure you are in 
Command mode, then enter: 

:r temp 

Your file should look like this: 

[FJiles contain text. 
Text contains lines. 
Lines contain characters. 
Characters form words. 
Words form text. 
Files contain text. 
Text contains lines. 
Lines contain characters. 
Characters form words. 
Words form text. 

The text from temp has been copied and put in the current file practice. 
There is an empty line at the top of the file. Move the cursor to the empty 
line and delete it with the dd command. 

2.2.11 Leaving vi Temporarily 

vi allows you to execute commands outside of the file you are editing, 
such as date. To find out the date and time, enter: 

:!date 

2-14 



vi: A Text Editor 

Press RETURN. This displays the date, then prompts you to press 
RETURN to reenter Command mode. Go ahead and try it. Your screen 
should look similar to this: 

Files contain text. 
Text contains lines. 
Lines contain characters. 
Characters form words. 
Words form text. 
Files contain text. 
Text contains lines. 
Lines contain characters. 
Characters form words. 
Words form text. 

: !date 
Man Jan 9 16:33:37 PST 1985 
[Hit return to continue] 

2.2.12 Changing Your Display 

Besides the set of editing commands described above, there are a number 
of options that can be set either when you invoke vi, or later when editing. 
These options allow you to control editing parameters such as line 
number display, and whether or not case is significant in searches. In this 
section we will learn how to tum on line numbering, and how to look at 
the current option settings. 

To tum on automatic line numbering, enter: 

:set number 

2-15 



XENIX User's Guide 

Press RETURN. Your screen is redrawn, and line numbers appear to the 
left of the text. Your screen looks like this: 

1 Files contain text. 
2 Text contains lines. 
3 Lines contain characters. 
4 Characters form words. 
5 Words form text. 
6 Files contain text. 
7 Text contains lines. 
8 Lines contain characters. 
9 Characters form words. 

10 Words form text. 

You can get a complete list of the available options by entering: 

:set all 

and pressing RETURN. Setting these options is described in the section 
"Setting Up Your Environment," but it is important that you be aware of 
their existence. Depending on what you are working on, and your own 
preferences, you will want to alter the default settings for many of these 
options. 

2.2.13 Canceling an Editing Session 

Finally, to exit vi without saving the file practice, enter: 

:q! 

and press RETURN. This cancels all the changes you have made to prac­
tice and, since it is a new file, deletes it. The prompt appears. If practice 
had already existed before this editing session, the changes you made 
would be disregarded, but the file would still exist. 

2-16 



vi: A Text Editor 

This completes the demonstration. You have learned how to get in and 
out of vi, insert and delete text, move the cursor around, make searches 
and replacements, how to execute line-oriented commands, copy text 
from other files, and cancel an editing session. 

There are many more commands to learn, but the fundamentals of using 
vi have been covered. The following sections will give you more detailed 
information about these commands and about other vi commands and 
features. 

2.3 Editing Tasks 

The following sections explain how to perform common editing tasks. By 
following the instructions in each section you will be able to complete 
each task described. Features that are needed in several tasks are 
described each time they are used, so some information is repeated. 

2.3.1 How to Enter the Editor 

There are several ways to begin editing, depending on what you are plan­
ning to do. This section describes how to start, or "invoke" the editor 
with one filename. To invoke vi on a series of files, see the section "Edit­
ing a Series of Files." 

With a Filename 

The most common way to enter vi is to enter the command vi and the 
name of the file you wish to edit: 

vi filename 

If filename does not already exist, anew, empty file is created. 

2-17 



XENIX User's Guide 

At a Particular Line 

You can also enter the editor at a particular place in a file. For example, if 
you wish to start editing a file at line 100, enter: 

vi +100 filename 

The cursor is placed at line 100 of filename. 

At a Particular Word 

If you wish to begin editing at the first occurrence of a particular word, 
enter: 

vi +Iword filename 

The cursor is placed at the first occurrence of word. For example, to begin 
editing the file temp at the the first occurrence of contain, enter: 

vi +/contain temp 

2.3.2 Moving the Cursor 

The cursor movement keys allow you to move the cursor around in a file. 
Cursor movement can only be done in Command mode. 

Moving the Cursor by Characters: h, I, f, F, t, T, SPACE, BKSP 

The SPACE bar and the I key move the cursor forward a specified number 
of characters. The BKSP key and the h key move it backward a specified 
number of characters. If no number is specified, the cursor moves one 
character. For example, to move backward four characters, enter: 

4h 

You can also move the cursor to a designated character on the current 
line. F moves the cursor back to the specified character, f moves it for­
ward. The cursor rests on the specified character. For example, to move 

2-18 



vi: A Text Editor 

the cursor backward to the nearest p on the current line, enter: 

Fp 

To move the cursor forward to the nearest p, enter: 

fp 

The T and t keys work the same way as f and F, but place the cursor 
immediately before the specified character. For example, to move the 
cursor back to the space next to the nearest p in the current line, enter: 

Tp 

If the p were in the word telephone, the cursor would sit on the h. 

The cursor always remains on the same line when you use these com­
mands. If you specify a number greater than the number of characters on 
the line, the cursor does not move beyond the beginning or end of that 
line. 

Moving the Cursor by Lines: j, k 

The j key moves the cursor down a specified number of lines, and the k 
key moves it up. If no number is specified, the cursor moves one line. For 
example, to move down three lines, enter: 

3j 

Moving the Cursor by Words: w, W, b, B, e, E 

The w key moves the cursor forward to the beginning of the specified 
number of words. Punctuation and nonalphabetic characters (such as 
!@#$%"&*CL+{ Hrl\'<>J) are considered words, so if a word is fol­
lowed by a comma the cursor will count the comma in the specified 
number. 

For example, your cursor rests on the first letter of this sentence: 

No, I didn't know he had returned. 

2-19 



XENIX User's Guide 

If you press: 

6w 

the cursor stops on the k in know. 

W works the same way as w, but includes punctuation and non alphabetic 
characters as part of the word. Using the above example, if you press: 

6W 

the cursor stops on the r in returned; the comma and the apostrophe are 
included in their adjacent words. 

The e and E keys move the cursor forward to the end of a specified 
number of words. The cursor is placed on the last letter of the word. The e 
command counts punctuation and non alphabetic characters as separate 
words; E does not. 

Band b move the cursor back to the beginning of a specified number of 
words. The cursor is placed on the first letter of the word. The b command 
counts punctuation and nonalphabetic characters as separate words; B 
does not. Using the above example, if the cursor is on the r in returned, 
enter: 

4b 

and the cursor moves to the t in didn't. 

Enter: 

4B 

and the cursor moves to the first d in didn't. 

The w, W, band B commands will move the cursor to the next line if that 
is where the designated word is, unless the current line ends in a space. 

Moving the Cursor by Lines 

Forward: j, Ctrl-n, +, RETURN, LINEFEED, $ 

2-20 



vi: A Text Editor 

The RETURN, LINEFEED and + keys move the cursor forward a 
specified number of lines, placing the cursor on the first character. For 
example, to move the cursor forward six lines, enter: 

6+ 

The j and Ctrl-n keys move the cursor forward a specified number of 
lines. The cursor remains in the same place on the line, unless there is no 
character in that place, in which case it moves to the last character on the 
line. For example, in the following two lines if the cursor is resting on the 
e in characters, pressing j moves it to the period at the end of the second 
line: 

Lines contain characters. 
Text contains lines. 

The dollar sign($) moves the cursor to the end of a specified number of 
lines. For example, to move the cursor to the last character of the line four 
lines down from the current line, enter: 

4$ 

Backward: k, Ctrl-p 

Ctrl-p and k move the cursor backward a specified number of lines, keep­
ing it on the same place on the line. For example, to move the cursor 
backward four lines from the current line, enter: 

4k 

Moving the Cursor on the Screen: H, M, L 

The H, M and L keys move the cursor to the beginning of the top, middle 
and bottom lines of the screen, respectively. 

2.3.3 Moving Around in a File: Scrolling 

The following commands move the file so different parts can be displayed 
on the screen. The cursor is placed on the first letter of the last line 
scrolled. 

2-21 



XENIX User's Guide 

Scrolling Up Part of the Screen: Ctrl-u 

Ctrl-u scrolls up one-half screen. 

Scrolling Up the Full Screen: Ctrl-b 

Ctrl-b scrolls up a full screen. 

Scrolling Down Part of the Screen: Ctrl-d 

Ctrl-d scrolls down one-half screen. 

Scrolling Down a Full Screen: Ctrl-f 

Ctrl-f scrolls down a full screen. 

Placing a Line at the Top of the Screen: z 

To scroll the current line to the top of the screen, press: 

z 

then press RETURN. To place a specific line at the top of the screen, pre­
cede the z with the line number, as in 

33z 

Press RETURN, and line 33 scrolls to the top of the screen. For informa­
tion on how to display line numbers, see the section "Displaying Line 
Numbers: number." 

2.3.4 Inserting Text Before the Cursor: i and I 

You can begin inserting text before the cursor anywhere on a line, or at 
the beginning of a line. In order to insert text into a file, you must be in 
Insert mode. To enter Insert mode press: 

2-22 



vi: A Text Editor 

The "i" does not appear on the screen. Any text typed after the "i" 
becomes part of the file you are editing. To leave Insert mode and reenter 
Command mode, press ESC. For more explanation of modes in vi, see the 
section' 'Inserting Text." 

Anywhere on a Line: i 

To insert text before the cursor, use the i command. Press the i key to 
enter Insert mode (the "i" does not appear on your screen), then begin 
entering your text. To leave Insert mode and reenter Command mode, 
press ESC. 

At the Beginning of the Line: I 

Using an uppercase "I" to enter Insert mode also moves the cursor to the 
beginning of the current line. It is used to start an insertion at the begin­
ning of the current line. 

2.3.5 Appending After the Cursor: a and A 

You can begin appending text after the cursor anywhere on a line, or at 
the end of a line. Press ESC to leave Insert mode and reenter Command 
mode. 

Anywhere on a Line: a 

To append text after the cursor, use the a command. Press the a key to 
enter Insert mode (the "a" does not appear on your screen), then begin 
entering your text. Press ESC to leave Insert mode and reenter Command 
mode. 

At the end of a Line: A 

U sing an uppercase "A" to enter Insert mode also moves the cursor to the 
end of the current line. It is useful for appending text at the end of the 
current line. 

2-23 



XENIX User's Guide 

2.3.6 Correcting Typing Mistakes 

If you make a mistake while you are typing, the simplest way to correct it 
is with the BKSP key. Backspace across the line until you have back­
spaced over the mistake, then retype the line. You can only do this, how­
ever, if the cursor is on the same line as the error. See the sections 
"Deleting a Character: x and X" through "Deleting an Entire Insertion" 
for other ways to correct typing mistakes. 

2.3.7 Opening a New Line 

To open a new line above the cursor, press O. To open a new line below 
the cursor, press o. Both commands place you in Insert mode, and you 
may begin entering immediately. Press ESC to leave Insert mode and 
reenter Command mode. 

You may also use the RETURN key to open new lines above and below 
the cursor. To open a line above the cursor, move the cursor to the begin­
ning of the line, press i to enter Insert mode, then press RETURN. (For 
information on how to move the cursor, see the section' 'Moving the Cur­
sor.") To open a line below the cursor, move the cursor to the end of the 
current line, press i to enter Insert mode, then press RETURN. 

2.3.8 Repeating the Last Insertion 

Ctrl-@ repeats the last insertion. Press i to enter Insert mode, then press 
Ctrl-@. 

Ctrl-@ only repeats insertions of 128 characters or less. If more than 128 
characters were inserted, Ctrl-@ does nothing. 

For other methods of repeating an insertion, see the sections "Repeating 
the Last Insertion," "Inserting Text From Other Files," and "Repeating a 
Command." 

2.3.9 Inserting Text From Other Files 

To insert the contents of another file into the file you are currently editing, 
use the Read (r) command. Move the cursor to the line immediately 
above the place you want the new material to appear, then enter: 

:r filename 

2-24 



vi: A Text Editor 

where filename is the file containing the material to be inserted, and press 
RETURN. The text of filename appears on the line below the cursor, and 
the cursor moves to the first character of the new text. This text is a copy; 
the original filename still exists. 

Inserting selected lines from another file is more complicated. The 
selected lines are copied from the original file into a temporary holding 
place called a "buffer", then inserted into the new file. 

1. To select the lines to be copied, save your original file with the 
Write (:w) command, but do not exit vi. 

2. Enter: 

:e filename 

where filename is the file that contains the text you want to copy, 
and press RETURN. 

3. Move the cursor to the first line you wish to select. 

4. Enter: 

mk 

This "marks" the first line of text to be copied into the new file 
with the letter "k". 

5. Move the cursor to the last line of the selected text. Enter: 

"ay'k 

The lines from your first "mark" to the cursor are placed, or 
"yanked" into buffer a. They will remain in buffer a until you 
replace them with other lines, or until you exit the editor. 

6. Enter: 

:e# 

to return to your previous file. (For more information about this 
command, see the section "Editing a New File Without Leaving 
the Editor.") Move the cursor to the line above the place you want 
the new text to appear, then enter: 

"ap 

2-25 



XENIX User's Guide 

This' 'puts" a copy of the yanked lines into the file, and the cursor 
is placed on the first letter of this new text. The puffer still contains 
the original yanked lines. 

You can have 26 buffers named a, b, c, up to and including z. To name and 
select different buffers, replace the a in the above examples with whatever 
letter you wish. 

You may also delete text into a buffer, then insert it in another place. For 
information on this type of deletion and insertion, see the section "Mov­
ing Text.' , 

Copying Lines From Elsewhere in the File 

To copy lines from one place in a file to another place in the same file, use 
the Copy (co) command. 

co is a line-oriented command, and to use it you must know the line 
numbers of the text to be copied and its destination. To find out the 
number of the current line enter: 

:nu 

and press RETURN. The line number and the text of that line are 
displayed on the status line. To find out the destination line number, move 
the cursor to the line above where you want the copied text to appear and 
repeat the :nu command. You can also make line numbers appear 
throughout the file with the linenumber option. For information on how 
to set this option, see the section "Displaying Line Numbers: number." 
The following example uses the number option to display line numbers 
in a file. 

1 [F]iles contain text. 
2 Text contains lines. 
3 Lines contain characters. 
4 Characters form words. 
5 Words form text. 

2-26 



vi: A Text Editor 

Using the above example, to copy lines 3 and 4 and put them between 
lines 1 and 2, enter: 

:3,4 co 1 

The result is: 

1 Files contain text. 
2 Lines contain characters. 
3 [C]haracters form words. 
4 Text contains lines. 
5 Lines contain characters. 
6 Characters form words. 
7 Words form text. 

If you have text that is to be inserted several times in different places, you 
can save it in a temporary storage area, called a "buffer", and insert it 
whenever it is needed. For example, to repeat the first line of the follow­
ing text after the last line: 

[F]iles contain text. 
Text contains lines. 
Lines contain characters. 
Characters form words. 
Words form text. 

1. Move the cursor over the F in Files. Enter the following line, 
which will not be echoed on your screen: 

"ayy 

This "yanks" the first line into buffer a. Move the cursor over the 
Win Words. 

2-27 

I 



XENIX User's Guide 

2. Enter the following line: 

"ap 

This "puts" a copy of the yanked line into the file, and the cursor 
is placed on the first letter of this new text. The buffer still con­
tains the original yanked line. 

Your screen looks like this: 

Files contain text. 
Text contains lines. 
Lines contain characters. 
Characters form words. 
Words form text. 
[FJiles contain text. 

If you wish to "yank" several consecutive lines, indicate the number of 
lines you wish to yank after the name of the buffer. For example, to place 
three lines from the above text in buffer a, enter: 

"a3yy 

You can also use "yank" to copy parts of a line. For example, to copy the 
words Files contain, enter: 

2yw 

This yanks the next two words, including the word on which you place the 
cursor. To yank the next ten characters, enter: 

lOyl 

I indicates cursor motion to the right. To yank to the end of the line you 
are on, from where you are now, enter: 

y$ 

2-28 



vi: A Text Editor 

2.3.10 Inserting Control Characters into Text 

Many control characters have special meaning in vi, even when typed in 
Insert mode. To remove their special significance, press Ctrl-v before 
typing the control character. Note that Ctrl-j, Ctrl-q,and Ctrl-s cannot 
be inserted as text. Ctrl-j is a newline character. Ctrl-q and Ctrl-s are 
meaningful to the operating system, and are trapped by it before they are 
interpreted by vi. 

2.3.11 Joining and Breaking Lines 

To join two lines press: 

J 

while the cursor is on the first of the two lines you wish to join. 

To break: one line into two lines, position the cursor on the space preced­
ing the first letter of what will be the second line, press: 

r 

then press RETURN. 

2.3.12 Deleting a Character: x and X 

The x and X commands delete a specified number of characters. The x 
command deletes the character above the cursor; the X command deletes 
the character immediately before the cursor. If no number is given, one 
character is deleted. For example, to delete three characters following the 
cursor (including the character above the cursor), enter: 

3x 

To delete three characters preceding the cursor, enter: 

3X 

2-29 



XENIX User's Guide 

2.3.13 Deleting a Word: dw 

r:II The dw command deletes a specified number of words. If no number is 
'II given, one word is deleted. A word is interpreted as numbers and letters 

separated by whitespace. When a word is deleted, the space after it is also 
deleted. For example, to delete three words, enter: 

3dw 

2.3.14 Deleting a Line: D and dd 

The D command deletes all text following the cursor on that line, includ­
ing the character the cursor is resting oil. The dd command deletes a 
specified number of lines and closes up the space. If no number is given, 
only the current line is deleted. For example, to delete three lines, enter: 

3dd 

Another way to delete several lines is to use a line-oriented command. To 
use this command it helps to know the line numbers of the text you wish 
to delete. For information on how to display line numbers, see the section 
"Displaying Line Numbers: number." 

For example, to delete lines 200 through 250, enter: 

:200,250d 

Press RETURN. 

When the command finishes, the message: 

50 lines 

appears on the vi status line, indicating how many lines were deleted. 

2-30 



vi: A Text Editor 

It is possible to remove lines without displaying line numbers using short­
hand "addresses". For example, to remove all lines from the current line 
(the line the cursor rests on) to the end of the file, enter: 

:.,$d 

The dot (.) represents the current line, and the dollar sign stands for the 
last line in the file. To delete the current line and 3 lines following it, 
enter: 

:.,+3d 

To delete the current line and 3 lines preceding it, enter: 

:.,-3d 

For more information on using addresses in line-oriented commands, see 
vice) in the XENIX User's Reference. 

2.3.15 Deleting an Entire Insertion 

If you wish to delete all of the text you just entered, press Ctrl-u while 
you are in Insert mode. The cursor returns to the beginning of the inser­
tion. The text of the original insertion is still displayed, and any text you 
enter replaces it. When you press ESC, any text remaining from the origi­
nal insertion disappears. 

2.3.16 Deleting and Replacing Text 

Several vi commands combine removing characters and entering Insert 
mode. The following sections explain how to use these commands. 

2-31 

E 



XENIX User's Guide 

Overstriking: rand R 

The r command replaces the character under the cursor with the next 
character entered. To replace the character under the cursor with a "b", 
for example, enter: 

rb 

If a number is given before r, that number of characters is replaced with 
the next character entered. For example, to replace the character above 
the cursor, plus the next three characters, with the letter "b", enter: 

4rb 

Note that you now have four "b"s in a row. 

The R command replaces as many characters as you enter. To end the 
replacement, press ESC. For example, to replace the second line in the 
following text with "Spelling is important.": 

Files contain text. 
Text contains lines. 
Lines contain characters. 
Characters form words. 
Words form text. 

Move the cursor over the T in Text. Press R, then enter: 

Spelling is important. 

2-32 



vi: A Text Editor 

Press ESC to end the replacement. If you make a mistake, use the BKSP 
key to correct it. Your screen should now look like this: 

Files contain text. 
Spelling is important[.] 
Lines contain characters. 
Characters form words. 
Words form text. 

Substituting: sand S 

The s command replaces a specified number of characters, beginning with 
the character under the cursor, with text you enter. For example, to substi­
tute "xyz" for the cursor and two characters following it, enter: 

3sxyz 

The S command deletes a specified number of lines and replaces them 
with text you enter. You may enter as many new lines of text as you 
wish; S affects only how many lines are deleted. If no number is given, 
one line is deleted. For example, to delete four lines, including the current 
line, enter: 

4S 

This differs from the R command. The S command deletes the entire 
current line; the R command deletes text from the cursor onward. 

2-33 



XENIX User's Guide 

Replacing a Word: cw 

The cw command replaces a word with text you enter. For example, to 
replace the word "bear" with the word "fox", move the cursor over the 
"b" in "bear". Press: 

cw 

A dollar sign appears over the "r" in bear, marking the end of the text 
that is being replaced. Enter: 

fox 

and press ESC. The rest of "bear" disappears and only "fox" remains. 

Replacing the Rest of a Line: C 

The C command replaces text from the cursor to the end of the line. For 
example, to replace the text of the sentence: 

Who's afraid of the big bad wolf? 

from big to the end, move the cursor over the b in big and press: 

c 

A dollar sign ($) replaces the question mark (?) at the end of the line. 
Enter the following: 

little lamb? 

Press ESC. The remaining text from the original sentence disappears. 

Replacing a Whole Line: cc 

The cc command deletes a specified number of lines, regardless of the 
location of the cursor, and replaces them with text you enter. If no number 
is given, the current line is deleted. 

2-34 



vi: A Text Editor 

Replacing a Particular Word on a Line 

If a word occurs several times on one line, it is often convenient to use a 
line-oriented command to replace it. For example, to replace the word 
removing with "deleting" in the following sentence: 

In vi, removing a line is as easy as removing a letter. 

Make sure the cursor is at the beginning of that line, and enter: 

:s/removing/deleting/ g 

Press RETURN. This line-oriented command means "Substitute (s) for 
the word removing the word deleting, everywhere it occurs on the current 
line (g)". If you don't include a g at the end, only the first occurrence of 
removing is changed. 

For more information on using line-oriented commands to replace text, 
see the section "Searching and Replacing. " 

2.3.17 Moving Text 

To move a block of text from one place in a file to another, you can use 
the line-oriented m command. You must know the line numbers of your 
file to use this command. The number option displays line numbers. To 
set this option, press ESC to make sure you are in Command mode, then 
enter: 

set number 

Line numbers will appear to the left of your text. For more information 
on setting the number option, see the section "Displaying Line 
Numbers: number." 

2-35 



XENIX User's Guide 

The following example uses the number option. For other ways to 
display line numbers, see the section "Finding Out What Line You're 
On." 

1 [Fliles contain text. 
2 Text contains lines. 
3 Lines contain characters. 
4 Characters form words. 
5 Words form text. 

To insert lines 2 and 3 between lines 4 and 5, enter: 

:2,3m4 

Your screen should look like this: 

1 Files contain text. 
2 Characters form words. 
3 Text contains lines. 
4 Lines contain characters. 
5 [Wlords form text. 

To place line 5 after line 2, enter: 

:5m2 

2-36 



After moving, your screen should look like this: 

1 Files contain text. 
2 Characters form words. 
3 [W]ords form text. 
4 Text contains lines. 
S Lines contain characters. 

To make line 4 the first line in the file, enter: 

:4mO 

Your screen should look like this: 

1 [T]ext contains lines. 
2 Files contain text. 
3 Characters form words. 
4 Words form text. 
S Lines contain characters. 

vi: A Text Editor 

You can also delete text into a temporary storage place, called a "buffer," 
and insert it wherever you wish. When text is deleted it is placed in a 
"delete buffer." There are nine "delete buffers." 

The first buffer always contains the most recent deletion. In other words, 
the first deletion in a given editing session goes into buffer 1. The second 
deletion also goes into buffer 1, and pushes the contents of the old buffer 1 
into buffer 2. The third deletion goes into buffer 1, pushing the contents of 
buffer 2 into buffer 3, and the contents of buffer 1 into buffer 2. When 
buffer 9 has been used, the next deletion pushes the current text of buffer 9 
off the stack and it disappears. 

2-37 



XENIX User's Guide 

Text remains in the delete buffers until it is pushed off the stack, or until 
you quit the editor, so it is possible to delete text from one file, change 
files without leaving the editor, and place the deleted text in another file. 

Delete buffers are particularly useful when you wish to remove text, store 
·t, and put it somewhere else. Using the following text as an example: 

[F]iles contain text. 
Text contains lines. 
Lines contain characters. 
Characters form words. 
Words form text. 

Delete the first line by entering: 

dd 

Delete the third line the same way. Now move the cursor to the last line 
in the example and press: 

"Ip 

The line from the second deletion appears: 

Text contains lines. 
Characters form words. 
Words form text. 
[L]ines contain characters. 

Now enter: 

"2p 

2-38 



The line from the first deletion appears: 

Text contains lines. 
Characters form words. 
Words form text. 
Lines contain characters. 
[FJiles contain text. 

vi: A Text Editor 

Inserting text from a delete buffer does not remove the text from the 
buffer. Since the text remains in a buffer until it is either pushed off the 
stack or until you quit the editor, you may use it as many times as you 
wish. 

It is also possible to place text in named buffers. For information on how 
to create named buffers, see the section "Inserting Text From Other 
Files. " 

2.3.18 Searching: / and ? 

You can search forward and backward for patterns in vi. To search for­
ward, press the slash (I) key. The slash appears on the status line. Enter 
the characters you wish to search for. Press RETURN. If the specified 
pattern exists, the cursor will move to the first character of the pattern. 

For example, to search forward in the file for the word "account", enter: 

/account 

Press RETURN. The cursor is placed on the first character of the pattern. 
To place the cursor at the beginning of the line above "account", for 
example, enter: 

/account/-

2-39 



XENIX User's Guide 

To place the cursor at the beginning of the line two lines above the line 
that contains "account", enter: 

/account/-2 

To place the cursor two lines below "account", enter: 

/account/+ 2 

To search backward through a file, use ? instead of / to start the search. 
For example, to find all occurrences of "account" above the cursor, 
enter: 

?account 

To search for a pattern containing any of the special characters (. * \ [ ] -
$ and A), each special character must be preceded by a backslash. For 
example, to find the pattern "U.S.A.", enter: 

M.S\.A\./ 

You can continue to search for a pattern by pressing: 

n 

after each search. The pattern is unaffected by intervening vi commands, 
and you can use n to search for the pattern until you enter a new pattern 
or quit the editor. 

vi searches for exactly what you enter. If the pattern you are searching for 
contains an uppercase letter (for example, if it appears at the beginning of 
a sentence), vi ignores it. To disregard case in a search command, you can 
set the ignorecase option: 

:set ignorecase 

2-40 



vi: A Text Editor 

By default, searches "wrap around" the file. That is, if a search starts in 
the middle of a file, when vi reaches the end of the file it will "wrap 
around" to the beginning, and continue until it returns to where the 
search began. Searches will be completed faster if you specify forward or 
backward searches, depending on where you think the pattern is. 

If you do not want searches to wrap around the file, you can change the 
, 'wrapscan" option setting. Enter: 

:set nowrapscan 

and press RETURN to prevent searches from wrapping. For more infor­
mation about setting options, see the section "Setting Up Your Environ­
ment." 

2.3.19 Searching and Replacing 

The search and replace commands allow you to perform complex changes 
to a file in a single command. Learning how to use these commands is a 
must for the serious user of vi. 

The syntax of a search and replace command is: 

g/patternl /s/[pattern2]/[ options] 

Brackets indicate optional parts of the command line. The g tells the 
computer to execute the replacement on every line in the file. Otherwise 
the replacement would occur only on the current line. The options are 
explained in the following sections. 

2-41 



XENIX User's Guide 

To explain these commands we will use the example file from the 
demonstration run: 

[Fjiles contain text. 
Text contains lines. 
Lines contain characters. 
Characters form words. 
Words form text. 

Replacing a Word 

To replace the word "contain" with the word "are" throughout the file, 
enter the following command: 

:g/contain lsi/are /g 

This command says' 'On each line of the file (g), find contain and substi­
tute for that word (s//) the word are, everywhere it occurs on that line (the 
second g)". Note that a space is included in the search pattern for con­
tain; without the space contains would also be replaced. 

After the command executes your screen should look like this: 

[Fjiles are text. 
Text contains lines. 
Lines are characters. 
Characters form words. 
Words form text. 

2-42 



vi: A Text Editor 

Printing all Replacements 

To replace "contain" with "are" throughout the file, and print every line 
changed, use the p option: 

:g/contain /sl/are /gp 

Press RETURN. After the command executes, each line in which "con­
tain" was replaced by "are" is printed on the lower part of the screen. To 
remove these lines, redraw the screen by pressing Ctrl-l. 

Choosing a Replacement 

Sometimes you may not want to replace every instance of a given pattern. 
The c option displays every occurrence of pattern and waits for you to 
confirm that you want to make the substitution. If you press y the substitu­
tion takes place; if you press RETURN the next instance of pattern is 
displayed. 

To run this command on the example file, enter: 

:g/contain/s//are/gc 

Press RETURN. The first instance of "contain" appears on the status 
line: 

Files £9n.t~i!.1 text. 

Press y , then RETURN. The next occurrence of contain appears. 

2.3.20 Pattern Matching 

Search commands often require, in addition to the characters you want to 
find, a context in which you want to find them. For example, you may 
want to locate every occurrence of a word at the beginning of a line. vi 
provides several special characters that specify particular contexts. 

2-43 



XENIX User's Guide 

Matching the Beginning of a Line 

When a/caretC') is placed at the beginning of a pattern, only patterns 
found at the beginning of a line are matched. For example, the following 
search pattern only finds' 'text' ' when it occurs as the first word on a line: 

(text/ 

To search for a caret that appears as text you must precede it with a 
backslash (\). 

Matching the End of a Line 

When a dollar sign C$) is placed at the end of a pattern, only patterns 
found at the end of a line are matched. For example, the following search 
pattern only finds "text" when it occurs as the last word on a line: 

/text$/ 

To search for a dollar sign that appears as text you must precede it with a 
backslash (\). 

Matching Any Single Character 

When used in a search pattern, the period C.) matches any single character 
except the newline character. For example, to find all words that end with 
, 'ed' " use the following pattern: 

/.ed / 

Note the space between the d and the backslash. 

To search for a period in the text, you must precede it with a backslash (\). 

2-44 



vi: A Text Editor 

Matching a Range of Characters 

A set of characters enclosed in square brackets matches any single char­
acter in the range designated. For example, the search pattern: 

J[a-z]J 

finds any lowercase letter. The search pattern: 

J[aA]ppleJ 

finds all occurrences of "apple" and "App Ie". 

To search for a bracket that appears as text, you must precede it with a 
backslash (\). 

Matching Exceptions 

A caret C) at the beginning of string matches every character except those 
specified in string. For example the search pattern: 

["a-z] 

finds anything but a lowercase letter or a newline. 

Matching the Special Characters 

To place a caret, hyphen or square bracket in a search pattern, precede it 
with a backslash. To search for a caret, for example, enter: 

/\J 

If you need to search for many patterns that contain special characters, 
you can reset the magic option. To do this, enter: 

:nomagic 

2-45 



XENIX User's Guide 

This removes the special meaning from the characters ., \, $, [ and ]. You 
can include them in search and replace commands without a preceding 
backslash. Note that the specia! meaning cannot be removed from the 
special characters star (*) and caret C); these must always be preceded by 
a backslash in searches. 

To restore magic, enter: 

:set magic 

For more information about setting options, see section 2.5, "Setting Up 
Your Environment' '. 

2.3.21 Undoing a Command: u 

Any editing command can be reversed with the Undo (u) command. The 
Undo command works on both screen-oriented and line-oriented com­
mands. For example, if you have deleted a line and then decide you wish 
to keep it, press u and the line will reappear. 

Use the following line as an example: 

[T]ext contains lines. 

2-46 



vi: A Text Editor 

Place the cursor over the "c" in "contains", then delete the word with 
the dw command. Your screen should look like this: 

Text [l]ines. 

Press u to undo the dw command. contains reappears: 

Text [c]ontains lines. 

If you press u again, "contains" is deleted again: 

Text [l]ines. 

It is important to remember that u only undoes the last command. For 
example, if you make a global search and replace, then delete a few char­
acters with the x command, pressing u will undo the deletions but not the 
global search and replace. 

2-47 



XENIX User's Guide 

2.3.22 Repeating a Command: . 

Any screen-oriented vi command can be repeated with the Repeat (.) 
command. For example, if you have deleted two words by entering: 

2dw 

you may repeat this command as many times as you wish by pressing the 
period key (.). Cursor movement does not affect the Repeat command, so 
you may repeat a command as many times and in as many places in a file 
as you wish. 

The Repeat command only repeats the last vi command. Careful planning 
can save time and effort. For example, if you want to replace a word that 
occurs several times in a file (and for some reason you do not wish to use 
a global command), use the cw command instead of deleting the word 
with the dw command, then inserting new text with the i command. By 
using the cw command you can repeat the replacement with the dot (.) 
command. If you delete the word, then insert new text, dot only repeats 
the replacement. 

2.3.23 Leaving the Editor 

There are several ways to exit the editor and save any changes you may 
have made to the file. One way is to enter: 

:x 

and press RETURN. This command replaces the old copy of the file with 
the new one you have just edited, quits the editor, and returns you to the 
XENIX shell. Similarly, if you enter: 

zz 

the same thing happens, except the old copy file is written out only if you 
have made any changes. Note that the ZZ command is not preceded by a 
colon, and is not echoed on the screen. 

2-48 



vi: A Text Editor 

To leave the editor without saving any changes you have made to the file, 
enter: 

:q! 

The exclamation point tells vi to quit unconditionally. If you leave out the 
exclamation point: 

:q 

vi will not let you quit. You will see the error message: 

No write since last change (:quit! overrides) 

This message tells you to use :q! if you really want to leave the editor 
without saving your file. 

Saving a File Without Leaving the Editor 

There are many occasions when you must save a file without leaving the 
editor, such as when starting a new shell, or moving to another file. 
Before you can perform these tasks you must first save the current file 
with the Write (:w) command: 

:w 

You do not need to enter the name of the file; vi remembers the name you 
used when you invoked the editor. If you invoked vi without a filename, 
you may name the file by entering: 

:w filename 

where filename is the name of the new file. 

2-49 



XENIX User'sGuide 

2.3.24 Editing a Series of Files 

Entering and leaving vi for each new file takes time, particularly on a 
heavily used system, or when you are editing large files. If you have 
many files to edit in one session, you can invoke vi with more than one 
filename, and thus edit more than one file without leaving the editor, as 
Ill: 

vi file! file2 file3 file4 file5 file6 

But entering many filenames is tedious, and you may make a mistake. If 
you mistype a filename, you must either backspace over to mistake and 
reenter the line, or kill the whole line and reenter it. It is more convenient 
to invoke vi using the special characters as abbreviations. 

To invoke vi on the above files without typing each name, enter: 

vi file* 

This invokes vi on all files that begin with the letters "file". You can plan 
your filenames to save time in later editing. For example, if you are writ­
ing a document that consists of many files, it would be wise to give each 
file the same filename extension, such as ".s". Then you can invoke vi on 
the entire document: 

vi *.s 

You can also invoke vi on a selected range of files: 

vi [3-5]*.s 

or 

vi [a-h]* 

To invoke vi on all files that are five letters long, and have any extension: 

vi ?????* 

For more information on using special characters, see "Naming Conven­
tions" in the "Basic Concepts" chapter of the XENIX Tutorial. 

2-50 



vi: A Text Editor 

When you invoke vi with more than one filename, you will see the fol­
lowing message when the first file is displayed on the screen: 

x files to edit 

After you have finished editing a file, save it with the Write (:w) com­
mand, then go to the next file with the Next (:n) command: 

:n 

The next file appears, ready to edit. It is not necessary to specify a 
filename; the files are invoked in alphabetical (or numerical, if the 
filenames begin with numbers) order. 

If you forget what files you are editing, enter: 

:args 

The list of files appears on the status line. The current file is enclosed in 
square brackets. 

To edit a file out of order, such as file4 after file2, enter: 

:e file4 

instead of using the (:n) command. If you enter: 

:n 

after you finish editing file4, you will go back to file3. 

If you wish to start again from the beginning of the list, enter: 

:rew 

To discard the changes you made and start again at the beginning, enter: 

:rew! 

2-51 



XENIX User's Guide 

2.3.25 Editing a New File Without Leaving the Editor 

You can start editing another file anywhere on the XENIX system without 
leaving vi. This saves time when you wish to edit several files in one ses­
sion that are in different directories, or even in the same directory. For 
example, if you have finished editing lusrljoelmemo and you wish to edit 
lusrlmarylletter, first save the file memo with the Write (:w) command 
then enter: 

:e /usr/mary /letter 

lusrlmaryl letter appears on your screen just as though you had left vi. 

Note 

You must write out your file with the Write (:w) command to save 
the changes you have made. If you try to edit a second file without 
writing out the first file, the message "No write since last change 
(:e! overrides),' appears. If you use :e! all your changes to the first 
file are discarded. 

If you want to switch back and forth between two files, vi remembers the 
name of the last file edited. Using the above example, if you wish to go 
back and edit the file lusrljoelmemo after you have finished with 
I usrlmaryl letter, enter: 

:e# 

The cursor is positioned in the same location it was when you first saved 
lusrljoelmemo. 

2.3.26 Leaving the Editor Temporarily: Shell Escapes 

You can execute any XENIX command from within vi using the shell 
Escape (!) command. For example, if you wish to find out the date and 
time, enter: 

:!date 

2-52 



vi: A Text Editor 

The exclamation point sends the remainder of the line to the shell to be 
executed, and the date and time appear on the vi status line. You can use 
the ! to perform any XENIX command. To send mail to joe without leav­
ing the editor, enter: 

:!mail joe 

Type your message and send it. (For more information about the XENIX 
mail system, see the "mail" chapter.) After you send it, the message 

[Hit return to continue] 

appears. Press RETURN to continue editing. 

If you want to perform several XENIX commands before returning to the 
editor, you can invoke a new shell: 

:!sh 

The XENIX prompt appears. You may execute as many commands as you 
like. Press Ctrl-d to terminate the new shell and return to your file. 

If you have not written out your file before a shell escape, you will see 
the message: 

[N 0 write since last change] 

It is a good idea to save your file with the Write (:w) command before 
executing an escape, just in case something goes wrong. However, once 
you become an experienced vi user, you may wish to tum off this mes­
sage. To turn off the "No write" message, reset the warn option, as fol­
lows: 

:set now am 

For more information about setting options in vi, see the section "Setting 
Up Your Environment. ' , 

2.3.27 Performing a Series of Line-Oriented Commands: Q 

If you have several line-oriented commands to perform, you can place 
yourself temporarily in Line-oriented mode by entering: 

Q 

2-53 



XENIX User's Guide 

while you are in Command mode. A colon prompt appears on the status 
line. 

Commands executed in this mode cannot be undone with the u command, 
nor do they appear on the screen until you re-enter Normal vi mode. To 
re-enter Normal vi mode, enter: 

vi 

2.3.28 Finding Out What File You're In 

If you forget what file you are editing, press Ctrl-g while you are in Com­
mand mode. A line similar to the following appears appears on the status 
line: 

"memo" [Modified] line 12 of 100 --12%--

From left to right, the following information is displayed: 

• The name of the file 

• Whether or not the file has been modified 

• The line number the cursor is on 

• How many lines there are in the file 

• Your location in the file (expressed as a percentage) 

This command is also useful when you need to know the line number of 
the current line for a line-oriented command. 

The same information can be obtained by entering: 

: file 

or 

:f 

2-54 



vi: A Text Editor 

2.3.29 Finding Out What Line You're On 

To find out what line of the file you are on, enter: 

:nu 

and press RETURN. This command displays the current line number and 
the text of the line. 

To display line numbers for the entire file, see the section "Displaying 
Line Numbers: number." 

2.4 Solving Common Problems 

The following is a list of common problems that you may encounter when 
using vi, along with the probable solution. 

• I don't know which mode I'm in. 

Press ESC until the bell rings. When the bell rings you are in 
Command mode. 

• I can't get out of a subshell. 

Press Ctrl-d to exit any subshell. If you have created more than 
one subshell (not a good idea, usually), keep pressing Ctrl-d until 
you see the message: 

[Hit return to continue] 

• I made an inadvertent deletion (or insertion). 

Press u to undo the last Delete or Insert command. 

• There are extra characters on my screen. 

Press Ctrl-l to redraw the screen. 

• When I type, nothing happens. 

vi has crashed and you are now in the shell with your terminal 
characteristics set incorrectly. To reset the keyboard, slowly enter: 

stty sane 

2-55 



XENIX User's Guide 

then press Ctrl-j or LINEFEED. Pressing Ctrl-j instead of 
RETURN is important here, since it is quite possible that the 
RETURN key will not work as a newline character. To make sure 
that other terminal characteristics have not been altered, log off, 
tum your terminal off, tum your terminal back on, and then log 
back in. This should guarantee that your terminal's characteristics 
are back to normal. This procedure may vary somewhat depending 
on the terminal. 

• The system crashed while I was editing. 

Normally, vi will inform you (by sending you mail) that your file 
has been saved before a crash. The file can be recovered by enter­
ing: 

vi -r filename 

If vi was unable to save the file before the crash, it is irretrievably 
lost. 

• I keep getting a colon on the status line when I press RETURN 

You are in line-oriented Command mode. Enter: 

vi 

to return to normal vi Command mode. 

• I get the error message "Unknown terminal type [Using open 
mode]" when I invoke vi. 

Your terminal type is not set correctly. To leave Open mode, press 
ESC, then enter: 

:wq 

and press RETURN. Tum to the section "Setting the Terminal 
Type" for information on how to set your terminal type correctly. 

2.5 Setting Up Your Environment 

There are a number of options that can be set that affect your terminal 
type, how files and error messages are displayed on your screen, and how 
searches are performed. These options can be set with the set command 
while you are editing, or they can be placed in the vi startup file, .exrc. 
(The .exrc file is explained in the section "Customizing Your 

2-56 



vi: A Text Editor 

Environment: The .exrc File.") The following sections describe the most 
commonly used options and how to set them. There is a complete list of 
options in vi(C) in the XENIX User's Reference. 

2.5.1 Setting the Terminal Type 

Before you can use vi, you must set the terminal type, if this has not 
already been done for you, by defining the TERM variable in your .profile 
file. (The .profile file is explained in the XENIX User's Guide.) The 
TERM variable is a number that tells the operating system what type of 
terminal you are using. To determine this number you must find out what 
type of terminal you are using. Then look up this type in terminals(M) in 
the XENIX User's Reference. If you cannot find your terminal type or its 
number, consult your System Administrator. 

For these examples, we will suppose that you are using an HP 2621 termi­
nal. For the HP 2621, the TERM variable is "2621 ". How you define this 
variable depends on which shell you are using. You can usually deter­
mine which shell you are using by examining the prompt character. The 
Bourne shell prompts with a dollar sign ($); the C-shell prompts with a 
percent sign (%). 

Setting the TERM variable: The Visual Shell 

If you are using the Visual Shell the terminal type has already been set, 
and you do not need to change it. 

Setting the TERM variable:The Bourne Shell 

To set your terminal type to 2621 place the following commands in the 
file .profile: 

TERM=2621 
export TERM 

Setting the TERM variable: The C Shell 

To set your terminal type to 2621 for the C shell, place the following 
command in the file .login: 

setenv TERM 2621 

2-57 



XENIX User's Guide 

2.5.2 Setting Options: The set Command 

The set command is used to display option settings and to set options. 

Listing the Available Options 

To get a list of the options available to you and how they are set, enter: 

:set all 

Your display should look similar to this: 

noautoindent open noslowopen 
autoprint nooptimize tabstop=8 
noautowrite paragraphs=IPLPPPQPP LIbp taglength=O 
nobeautify noprompt ttytype=h19 
directory=/tmp noreadonly term=h19 
noerrorbells redraw noterse 
hardtabs=8 report=5 warn 
noignorecase scroll=4 window=8 
nolisp sections=NHSHH HU wraps can 
nolist shell=/bin/sh wrapmargin=O 
magic shiftwidth=8 nowriteany 
nonumber noshowmatch 

This chapter discusses only the most commonly used options. For infor­
mation about the options not covered in this chapter, see vice) in the 
XENIX User's Reference. 

Setting an Option 

To set an option, use the set command. For example, to set the ignore­
case option so that case is not ignored in searches, enter: 

set noignorecase 

2-58 



vi: A Text Editor 

2.5.3 Displaying Tabs and End-of-Line: list 

The list option causes the "hidden" characters and end-of-line to be 
displayed. The default setting is nolist. To display these characters, enter: 

:set list 

Your screen is redrawn. The dollar sign ($) represents end-of-line and 
Ctrl-i CI) represents the tab character. 

2.5.4 Ignoring Case in Search Commands: ignorecase 

By default, case is significant in search commands. To disregard case in 
searches, enter: 

:set ignorecase 

To change this option, enter: 

:set noignorecase 

2.5.5 Displaying Line Numbers: number 

It is often useful to know the line numbers of a file. To display these 
numbers, enter: 

:set number 

This redraws your screen. Numbers appear to the left of the text. To 
remove line numbers, enter: 

:set nonumber 

2.5.6 Printing the Number of Lines Changed: report 

The report option tells you the number of lines modified by a line­
oriented command. For example, 

:set report=l 

2-59 



XENIX User's Guide 

reports the number of lines modified, if more than one line is changed. 
The default setting is: 

report=5 

which reports the number of lines changed when more than five lines are 
modified. 

2.5.7 Changing the Terminal Type:term 

If you are logged in on a terminal that is a different type than the one you 
normally use, you can check the terminal type setting by entering: 

:set term 

Press RETURN. See the section "Setting the Terminal Type" for more 
information about TERM variables. 

2.5.8 Shortening Error Messages: terse 

After you become experienced with vi, you may want to shorten your 
error messages. To change from the default noterse, enter: 

:set terse 

As an example of the effect of terse, when terse is set the message: 

No write since last change, quit! overrides 

becomes: 

No write 

2.5.9 Turning Off Warnings: warn 

After- you become experienced with vi, you may want to tum off the error 
message that appears if you have not written out your file before a Shell 
Escape (:!) command. To tum these messages off, enter: 

:set nowam 

2-60 



vi: A Text Editor 

2.5.10 Permitting Special Characters in Searches: nomagic 

The nomagic option allows the inclusion of the special characters (. \ $ [ 
]) in search patterns without a preceding backslash. This option does not 
affect caret (M) or star (*); they must be preceded by a backslash in 
searches regardless of magic. To set nomagic, enter: 

:set nomagic 

2.5.11 Limiting Searches: wrapscan 

By default, searches in vi "wrap" around the file until they return to the 
place they started. To save time you may want to disable this feature. Use 
the following command: 

: set nowrapscan 

When this option is set, forward searches go only to the end of the file, 
and backward searches stop at the beginning. 

2.5.12 Thrning on Messages: mesg 

If someone sends you a message with the write command while you are 
in vi the text of the message will appear on your screen. To remove the 
message from your display you must press Ctrl-l. When you invoke vi, 
write permission to your screen is automatically turned off, preventing 
write messages from appearing. If you wish to receive write messages 
while in vi, reset this option as follows: 

:set mesg 

2.5.13 Customizing Your Environment: The .exrc File 

Each time vi is invoked, it reads commands from the file named .exrc in 
your home directory. This file sets your preferred options so that they do 
not need to be set each time you invoke vi. A sample .exrc file follows: 

set number 
set ignorecase 
set nowam 
set report= 1 

2-61 



XENIX User's Guide 

Each time you invoke vi with the above options, your file is displayed 
with line numbers, case is ignored in searches, warnings before shell 
escape commands are turned off, and any command that modifies more 
than one line will display a message indicating how many lines were 
changed. 

2.6 Summary of Commands 

The following tables contain all the basic commands discussed in this 
chapter. 

Entering vi 

Typing this: Does this: 

vi file Starts at line I 

vi +n file Starts at line n 

vi + file Starts at last line 

vi +/pattern file Starts at pattern 

vi -r file Recovers file after a sys-
tem crash 

2-62 



Cursor Movement 

Pressing this key: 

h 
1 
SPACEBAR 

w 
b 

k 
j 
RETURN 

) 
( 

Ctrl-w 

Ctrl-u 

Ctrl-d 

Ctrl-f 

Ctrl-b 

vi: A Text Editor 

Does this: 

Moves 1 space left 
Moves 1 space right 
Moves 1 space right 

Moves 1 word right 
Moves 1 word left 

Moves 1 line up 
Moves 1 line down 
Moves 1 line down 

Moves to end of sentence 
Moves to beginning of sentence 

Moves to beginning of paragraph 
Moves to end of paragraph 

Moves to first character of inser­
tion 

Scrolls up 1/2 screen 

Scrolls down 1/2 screen 

Scrolls down one screen 

Scrolls up one screen 

2-63 



XENIX User's Guide 

Inserting Text 

Pressing Starts insertion: 

Before the cursor 

I Before first character on the line 

a After the cursor 

A After last character on the line 

0 On next line down 

a On the line above 

r On current character, replaces 
one character only 

R On current character, replaces 
until ESC 

Delete Commands 

Command Function 

dw Deletes a word 

dO Deletes to beginning of line 

d$ Deletes to end of line 

3dw Deletes 3 words 

dd Deletes the current line 

5dd Deletes 5 lines 

x Deletes a character 

2-64 



Change Commands 

Command Function 

cw Changes 1 word 

3cw Changes 3 words 

cc Changes current line 

5cc Changes 5 lines 

Search Commands 

Command Function Example 

land Finds the next and, stand, grand 
occurrence of and 

?and Finds the previous and, stand, grand 
occurrence of and 

(The Finds next line The, Then, There 
that starts with 

l[bB]oxl 

n 

The 

Finds the next 
occurrence of box 
or Box 

Repeats the most 
recent search, in 
the same direction 

vi: A Text Editor 

2-65 



XENIX User's Guide 

Search and Replace Commands 

Command 

:s/pear/peach/ g 

: 1 ,$s/file/ directory 

:g/one/s//l/g 

Result 

All pears become 
peach on the 
current line 

Replaces file with 
directory from 
line 1 to the end. 

Replaces every 
occurrence of one 
with 1. 

Pattern Matching: Special Characters 

This character: Matches: 

Beginning of a line 

$ End of a line 

Any single character 

[] A range of characters 

2-66 

Example 

filename becomes 
directoryname 

one becomes 1, 
oneself becomes 
1 self, someone 
becomes some 1 



vi: A Text Editor 

Leaving vi 

Command Result 

:w Writes out the file 

:x Writes out the file, quits 
vi 

:q! Quits vi without saving 
changes 

:!command Executes command 

:!sh Forks a new shell 

!!command Executes command and 
places output on current 
line 

:e file Edits file (save current 
file with :w first) 

2-67 



XENIX User's Guide 

Options 

This option: Does this: 

all Lists all options 

term Sets terminal type 

ignorecase Ignores case in searches 

list Displays tab and end-of-line characters 

number Displays line numbers 

report Prints number of lines changed by a line­
oriented command 

terse Shortens elTor messages 

warn Turns off' 'no write" warning before escape 

nomagic Allows inclusion of special characters in search 
patterns without a preceding backslash 

nowrapscan Prevents searches from wrapping around the 
end or beginning of a file. 

mesg Permits display of messages sent to your termi­
nal with the write command 

2-68 



Chapter 3 

ed 

3.1 Introduction 3-1 

3.2 Demonstration 3-1 

3.3 Basic Concepts 3-2 
3.3.1 The Editing Buffer 3-2 
3.3.2 Commands 3-2 
3.3.3 Line Numbers 3-2 

3.4 Tasks 3-3 
3.4.1 Entering and Exiting The Editor 3-3 
3.4.2 Appending Text: a 3-4 
3.4.3 Writing Out a File: w 3-5 
3.4.4 Leaving The Editor: q 3-6 
3.4.5 Editing A New File: e 3-7 
3.4.6 Changing the File to Write Out to: f 3-8 
3.4.7 Reading in a File: r 3-8 
3.4.8 Displaying Lines On The Screen: p 3-9 
3.4.9 Displaying The Current Line: dot (.) 3-12 
3.4.10 Deleting Lines: d 3-15 
3.4.11 Performing Text Substitutions: s 3-16 
3.4.12 Searching 3-19 
3.4.13 Changing and Inserting Text: c and i 3-23 
3.4.14 Moving Lines: m 3-25 
3.4.15 Performing Global Commands: g and v 3-27 
3.4.16 Displaying Tabs and Control Characters: 1 3-30 
3.4.17 Undoing Commands: u 3-31 
3.4.18 Marking Your Spot in a File: k 3-31 
3.4.19 Transferring Lines: t 3-32 
3.4.20 Escaping to the Shell:! 3-33 

3.5 Context and Regular Expressions 3-33 
3.5.1 Period: (.) 3-34 
3.5.2 Backslash: \ 3-36 
3.5.3 Dollar Sign: $ 3-39 
3.5.4 Caret: A 3-41 



3.5.5 Star: * 3-42 
3.5.6 Brackets: [and] 3-45 
3.5.7 Ampersand: & 3-47 
3.5.8 Substituting New Lines 3-49 
3.5.9 Joining Lines 3-50 
3.5.10 Rearranging a Line: \( and \) 3-50 

3.6 Speeding Up Editing 3-51 
3.6.1 Semicolon:; 3-54 
3.6.2 Interrupting the editor 3-56 

3.7 Cutting and Pasting with the editor 3-56 
3.7.1 Inserting One File Into Another 3-57 
3.7.2 Writing Out Part of a File 3-57 

3.8 Editing Scripts 3-59 

3.9 Summary of Commands 3-60 



3.1 Introduction 

ed is a text editor used to create and modify text. The text is normally a 
document, a program, or data for a program, thus ed is a truly general pur­
pose program. Note that the line editor ex, available with other XENIX 
packages is very similar to ed, and therefore this chapter can be used as 
an introduction to ex as well as to ed. 

3.2 Demonstration 

This section leads you through a simple session with ed, giving you a feel 
for how it is used and how it works. To begin the demonstration, invoke 
ed by entering: 

ed 

This invokes the editor and begins your editing session. ed has no prompt 
unless -0 string is used on the command line to specify one. A blank line 
prompts you for commands to be entered. Initially, you are editing a tem­
porary file that you can later copy to any file that you name. This tem­
porary file is called the "editing buffer," because it acts as a buffer 
between the text you enter and the file that you will eventually write out 
your changes to. Typically, the first thing you will want to do with an 
empty buffer is add text to it. For example, after the prompt, enter: 

a 
this is line 1 
this is line 2 
this is line 3 
this is line 4 

Follow this with Ctrl-D. This "appends" four lines of text to the buffer. 
To view these lines on your screen, enter: 

l,4p 

where the "1,4" specifies a line number range and the p command 
"prints" the specified lines on the screen. 

Now enter: 

2p 

3-1 



XENIX User's Guide 

to view line number two. Next enter: 

p 

This prints out the current line on the screen, which happens to be line 
number two. By default, most ed commands operate on only the current 
line. 

3.3 Basic Concepts 

This section illustrates some of the basic concepts that you need to under­
stand to effectively use ed. 

3.3.1 The Editing Buffer 

Each time you invoke ed, an area in the memory of the computer is allo­
cated for you to perform all of your editing operations. This area is 
called the "editing buffer." When you edit a file, the file is copied into 
this buffer where you will work on the copy of the original file. Only 
when you write out your file, do you affect the original copy of the file. 

3.3.2 Commands 

Commands are entered at your keyboard. Like normal XENIX commands, 
entry of a command is ended by entering a NEWLINE. After you enter 
NEWLINE the command is carried out. In the following examples, we 
will presume that entry of each command is completed by entering a 
NEWLINE, although this will not be shown in our examples. Most com­
mands are single characters that can be preceded by the specification of a 
line number or a line number range. By default, most commands operate 
on the "current line" described below in the section "Line Numbers." 
Many commands take filename or string arguments that are used by the 
command when it is executed. 

3.3.3 Line Numbers 

Any time you execute a command that changes the number of lines in the 
editing buffer, ed immediately renumbers the lines. At all times, every 
line in the editing buffer has a line number. Many editing commands will 
take either single line numbers or line number ranges as prefixing argu-

3-2 



ed 

ments. These arguments nonnally specify the actual lines in the editing 
buffer that are to be affected by the given command. By default, a special 
line number called "dot" specifies the current line. 

3.4 Tasks 

This section discusses the tasks you perfonn in everyday editing. Fre­
quently used and essential tasks are discussed near the beginning of this 
section. Seldom used and special-purpose commands are discussed later. 

3.4.1 Entering and Exiting The Editor 

The simplest way to invoke ed is to enter: 

ed 

The most common way, however, is to enter: 

ed filename 

where filename is the name of a new or existing file. 

To exit the editor, all you need to do is enter: 

q 

If you have not yet written out the changes you have made to your file, ed 
warns you that you will lose these changes by displaying the message: 

If you still want to quit, enter another q. In most cases you will want to 
exit by entering: 

w 
q 

so that you first write out your changes and only then exit the editor. 

3-3 



XENIX User's Guide 

3.4.2 Appending Text: a 

Suppose that you want to create some text starting from scratch. This 
section shows you how to enter text in a file, just to get started. Later 
we'll talk about how to change it. 

When you first invoke ed, it is like working with a blank piece of 
paper-there is no text or information present. Text must be supplied by 
the person using ed, usually by entering the text, or by reading it in from a 
file. We will start by entering· some text, and discuss how to read files 
later. 

In ed terminology, the text being worked on is said to be "kept in a 
buffer." Think of the buffer as a workspace, or simply as a place where 
the information that you are going to be editing is kept. In effect, the 
buffer is the piece of paper on which you will write, make changes, and 
save (write to the disk). 

You tell ed what to do to your text by entering instructions called "com­
mands." Most commands consist of a single letter, each entered on a 
separate line. ed prompts with an asterisk (*). The prompt can be turned 
on and off with the prompt command, P. 

The first command we will discuss is append (a), written as the letter "a" 
on a line by itself. It means "append (or add) text lines to the buffer, as 
they are entered.' Appending is like writing new material on a piece of 
paper. 

To enter lines of text into the buffer, enter an "a" followed by a RETURN, 
followed by the lines of text you want, as shown below: 

a 
Now is the time 
for all good men 
to come to the aid of their party. 

To stop appending, enter a line that contains only a period. The period ( . ) 
tells ed that you have finished appending. (You can also use Ctrl-D, but 
we will use the period throughout this discussion.) If ed seems to be 
ignoring you, enter an extra line with just a period ( . ) on it. You may find 
you've added some garbage lines to your text, which you will have to take 
out later. 

3-4 



ed 

After appending is completed, the buffer contains the following three 
lines: 

Now is the time 
for all good men 
to come to the aid of their party. 

The a and. aren't there, because they are not text. 

To add more text to what you already have, enter another a command, and 
continue entering your text. 

If you make an error in the commands you enter to ed, it will tell you by 
displaying the message: 

3.4.3 Writing Out a File: w 

You will probably want to save your text for later use. To write out the 
contents of the buffer into a file, use the write ( w ) command, followed 
by the name of the file that you want to write to. This copies the contents 
of the buffer to the specified file, destroying any previous contents of the 
file. For example, to save the text in a file named text, enter: 

w text 

Leave a space between w and the filename. ed responds by displaying the 
number of characters it has written out. For instance, ed might respond 
with 

(Remember that blanks and the newline character at the end of each line 
are included in the character count.) Writing out a file just makes a copy 
of the text-the buffer's contents are not disturbed, so you can go on 

3-5 



XENIX User's Guide 

adding text to it. If you invoked ed with the command "ed filename," 
then by default, a w command by itself will write the buffer out to 
filename. 

Note that ed at all times works on a copy of a file, not the file itself. No 
change in the contents of a file takes place until you give a w command. 
Writing out the text to a file from time to time as it is being created is a 
good idea. If the system crashes, or you make a mistake (not saving the 
file on disk), you will lose all of the text in the buffer, but any text that 
was written out to a file is relatively safe. 

3.4.4 Leaving The Editor: q 

To terminate a session with ed, save the text you're working on by writing 
it to a file using the w command, then enter: 

q 

The system responds with the XENIX prompt character. If you try to quit 
without writing out the file ed will display: 

At that point, write out the text if you want to save it; if not, entering 
another" q" will get you out of the editor. 

Exercise 

Enter ed and create some text by entering: 

a 
.. , text ." 

Write it out by entering: 

w filename 

3-6 



ed 

Then leave ed by entering: 

q 

Next, use the cat command to display the file on your terminal screen to 
see that everything has worked. 

3.4.5 Editing A New File: e 

A common way to get text into your editing buffer is to read it in from a 
file. This is what you do to edit text that you have saved with the w com­
mand in a previous session. The edit (e) command places the entire con­
tents of a file in the buffer. If you had saved the three lines "Now is the 
time" etc., with a w command in an earlier session, the ed command: 

e text 

would place the entire contents of the file text into the buffer and respond 
with 

which is the number of characters in text. If anything is already in the 
buffer, it is deleted first. 

If you use the e command to read a file into the buffer, then you don't 
need to use a filename after a w command. ed remembers the last 
filename used in an e command, and w will write to this file. Thus, a 
good way to operate is this: 

ed 
e file 
[editing session] 
w 
q 

This way, you can enter w from time to time and be secure in the 
knowledge that if you entered the filename right in the beginning, you are 
writing out to the proper file each time. 

3-7 



XENIX User's Guide 

3.4.6 Changing the File to Write Out to: f 

You can find out the last file written to at any time using the file ( f) com­
mand. Just enter f without a filename. You can also change the name of 
the remembered filename with f. Thus, a useful sequence is: 

ed precious 
f junk 

which gets a copy of the file named precious, then uses f to save the text 
in the file junk. The original file will be preserved as precious. 

3.4.7 Reading in a File: r 

Sometimes you want to read a file into the buffer without destroying what 
is already there. This function is useful for combining files. This is done 
with the read ( r) command. The command: 

r text 

reads the file text into your editing buffer and adds it to the end of what­
ever is already in the buffer. For example, suppose you have performed a 
read after an edit: 

e text 
r text 

The buffer now contains two copies of text (Le., six lines): 

Now is the time 
for all good men 
to come to the aid of their party. 
Now is the time 
for all good men 
to come to the aid of their party. 

Like the w and e commands, after the reading operation is complete r 
prints the number of characters read in. 

Exercise 

Experiment with the e command by reading and printing various files. 

3-8 



ed 

You may get the following error message: r ?n=e cannot open input file 

where name is the name of a nonexistent file. This means that the file 
doesn't exist, typically because you spelled the filename wrong, or 
perhaps because you do not have permission to read from or write to that 
file. Try alternately reading and appending, to see how they work. Verify 
that the command: 

ed file.text 

is equivalent to 

ed 
e file.text 

3.4.8 Displaying Lines On The Screen: p 

Use the "print"( command to print the contents of the editing buffer (or 
parts of it) on the terminal screen. Specify the lines where you want 
printing to begin and where you want it to end, separated by a comma and 
followed by the letter "p". Thus, to print the first two lines of the buffer 
(that is, lines 1 through 2) enter: 

1,2p 

ed displays: r Now is the time 
for all good men 

Suppose you want to print all the lines in the buffer. You could use 
" 1 ,3p" as shown above if you knew there were exactly 3 lines in the 
buffer. But you will rarely know how many lines there are, so ed provides 

3-9 



XENIX User's Guide 

a shorthand symbol for the line number of the last line in the buffer-the 
dollar sign ($). Use it as shown below: 

1,$p 

This will print all the lines in the buffer (from line 1 to the last line). If 
you want to stop the printing before it is finished, press the INTERRUPT 
key. ed then displays: 

r ~nterruPt 
and waits for the next command. 

To print the last line of the buffer, enter: 

$p 

You can print any single line by entering the line number, followed by a 
p. Thus: 

Ip 

produces the response: r Now is the time 

which is the first line of the buffer. 

In fact, ed lets you abbreviate even further: you can print any single line 
by entering just the line number; there's no need to enter the letter p. If 
you enter: 

$ 

ed prints the last line of the buffer. 

3-10 



ed 

You can also use $ in combinations like: 

$-l,$p 

which prints the last two lines of the buffer. This helps when you want to 
see how far you are in your entering. 

The next step is to use address arithmetic to combine the line numbers 
like dot (.) and dollar sign ($) with plus (+) and minus (-). (Note that 
"dot" is shorthand for the current line, and is discussed in a later sec 
tion.) Thus: 

$-1 

prints the next to last line of the current file (that is, one line before the 
line $). For example, to recall how far you were in a previous editing ses­
sion: 

$-5,$p 

prints the last six lines. (Be sure you understand why it's six, not five.) If 
there aren't six lines in the file, an error message is displayed. 

The command: 

.-3,.+3p 

prints from three lines before the current line (line dot) to three lines 
after. The plus (+) can be omitted. Thus: 

.-3,.3p 

is identical in meaning. 

Another area in which you can save entering effort in specifying lines is 
to use plus and minus as line numbers by themselves. For example: 

by itself is a command to move back one line in the file. In fact, you can 
string several minus signs together to move back that many lines. 

3-11 



XENIX User's Guide 

For example: 

moves back three lines, as does: 

-3 

Thus: 

-3,+3p 

is also identical to 

?-3p+3p 

3.4.9 Displaying The Current Line: dot ( .) 

Suppose your editing buffer still contains the following six lines: 

Now is the time 
for all good men 
to come to the aid of their party. 
Now is the time 
for all good men 
to come to the aid of their party. 

If you enter: 

1,3p 

ed displays: 

Now is the time 
for all good men 
to come to the aid of their party. 

Try entering: 

p 

3-12 



ed 

This prints: 

to come to the aid of their party. 

which is the third line of the buffer. In fact, it is the last (most recent) line 
that you have done anything with. You can repeat this p command 
without line numbers, and ed will continue to print line 3. 

This happens because ed maintains a record of the last line that you did 
anything to (in this case, line 3, which you just printed) so that it can be 
used instead of an explicit line number. The line most recently acted on 
is referred to with a period ( . ) and is called "dot." Dot is a line number 
in the same way that dollar ($) is; it means "the current line" or loosely, 
"the line you most recently did something to." You can use it in several 
ways. One way is to enter: 

.,$p 

This prints all the lines from (and including) the current line clear to the 
end of the buffer. In our example, these are lines 3 through 6. 

Some commands change the value of dot, while others do not. The p 
command sets dot to the number of the last line printed. In the example 
above, p sets dot to 6. 

Dot is often used in combinations like this one: 

.+1 

Or equivalently: 

.+lp 

3-13 



XENIX User's Guide 

This means, "print the next line" and is one way of stepping slowly 
through the editing buffer. You can also enter: 

.-1 

This means, "print the line before the current line." This enables you to 
go backwards through the file if you wish. Another useful command is 
shown below: 

.-3,.-lp 

which prints the previous three lines. 

Don't forget that all of these change the value of dot. You can find out 
what dot is at any time by entering: 

ed responds by printing the value of dot. Essentially, p can be preceded 
by zero, one, or two line numbers. If no line number is given, ed prints 
the "current line" the line that dot refers to. If one line number is given 
(with or without the letter p), ed prints that line (and dot is set there); and 
if two line numbers are given, ed prints all the lines in that range (and sets 
dot to the last line printed). If two line numbers are specified, the first 
cannot be bigger than the second. 

Pressing RETURN once causes printing of the next line. It is equivalent 
to: 

.+Ip 

Try it. Next, try entering a minus sign (- ) by itself; it is equivalent to 
entering: 

.-Ip 

3-14 



ed 

Exercise 

Create some text using the a command, and experiment with the p com­
mand. You will find, for example, that you can't print line 0, or a line 
beyond the end of the buffer, and that attempting to print lines in reverse 
order using "3,lp," does not work. 

3.4.10 Deleting Lines: d 

Suppose you want to remove three extra lines in the buffer. Use the 
delete (d) command. Its action is similar to that of p, except that d 
deletes lines instead of printing them. The lines to be deleted are 
specified for d exactly as they are for p. Thus, the command: 

4,$d 

deletes lines 4 through the end. There are now three lines left in our 
example, and you can check by entering: 

1,$p 

Notice that $ now is line 3! Dot is set to the next line after the last line 
deleted, unless the last line deleted is the last line in the buffer. In that 
case, dot is set to $. 

Exercise 

Experiment with the a, e, r, W, p, and d commands until you are sure that 
you know what they do, and until you understand how dot (.), dollar ($), 
and line numbers are used. 

Try using line numbers with a, r, and w, as well. You will find that a 
appends lines after the line number that you specify (rather than after 
dot); that r reads in a file after the line number you specify (not neces­
sarily at the end of the buffer); and that W writes out exactly the lines you 
specify, not the whole buffer. These variations are sometimes useful. For 
instance, you can insert a file at the beginning of a buffer by entering: 

Or filename 

3-15 



XENIX User's Guide 

and you can enter lines at the beginning of the buffer by entering: 

Oa 
[input text here] 

Notice that entering: 

.w 

is very different from entering: 

w 

since the former writes out only a single line and the latter writes out the 
whole file. 

3.4.11 Performing Text Substitutions: s 

One of the most important ed commands is the substitute ( s ) command. 
This is the command that is used to change individual words or letters 
within a line or group of lines. It is the command used to correct spelling 
mistakes and entering errors. 

Suppose that, due to a typing error, line 1 is: r Now is th time 

The letter "e" has been left off of the word "the" You can use s to fix 
this up as follows: 

Is/th/the/ 

This substitutes for the characters "th" the characters "the" in line 1. To 
verify that the substitution has worked, enter: 

p 

3-16 



ed 

to get: 

is the time 

which is what you wanted. Notice that dot must be the line where the 
substitution took place, since the p command printed that line. Dot is 
always set this way with the s command. 

The syntax for the substitute command follows: 

[starting-line,ending-line ] s/ pattern/ replacement! cmds 

Whatever string of characters is between the first pair of slashes is 
replaced by whatever is between the second pair, in all the lines between 
starting-line and ending-line. Only the first occurrence on each line is 
changed, however. Changing every occurrence is discussed later in this 
section. The rules for line numbers are the same as those for p, except 
that dot is set to the last line changed. (If no substitution takes place, dot 
is not changed. This displays the error message: 

r !earch string not found 

Thus, you can enter: 

1,$s/speling/spelling/ 

and correct the first spelling mistake on each line in the text. 

If no line numbers are given, the s command assumes we mean "make 
the substitution on line dot" so it changes things only on the current line. 
This leads to the following sequence: 

s/something/something else/p 

3-17 



XENIX User's Guide 

which makes a correction on the current line, then prints it to make sure 
the correction worked out right. If it didn't, you can try again. (Notice 
that the p is on the same line as the s command. With few exceptions, p 
can follow any command; no other multicommand lines are legal.) 

It is also legal to enter: 

s/string// 

which means "change the first string of characters to nothing" or, in 
other words, remove them. This is useful for deleting extra words in a 
line or removing extra letters from words. For instance, if you had 

N owxx is the time 

you could enter: 

s/xx//p 

to show: 

the time 

Notice that two adjacent slashes mean "no characters" not a space. 
There is a difference. 

Exercise 

Experiment with the substitute command. See what happens if you sub­
stitute a word on a line with several occurrences of that word. 
For example, enter: 

a 
the other side of the coin 

s/the/on the/p 

3-18 



ed 

This results in: 

I on the other side of the coin 

A substitute command changes only the first occurrence of the first string. 
You can change all occurrences by adding a g (for "global" to the s com­
mand, as shown below: 

s/ ... / ... /g 

Try using characters other than slashes to delimit the two sets of charac­
ters in the s command. Anything should work except spaces or tabs. 

3.4.12 Searching 

Now that you have been shown the substitute command, you can move on 
to another important concept: context searching. 

Suppose you have the original three-line text in the buffer: 

Now is the time 
for all good men 
to come to the aid of their party. 

Suppose you want to find the line that contains the word "their" so that 
you can change it to the word "the" With only three lines in the buffer, 
it's pretty easy to keep track of which line the word "their" is on. But if 
the buffer contains several hundred lines, and you have been making 
changes, deleting and rearranging lines, you would no longer really know 
what this line number would be. Context searching is simply a method of 
specifying the desired line, regardless of its number, by specifying a tex­
tual pattern contained in the line. 

The way to "search for a line that contains this particular string of char­
acters" is to enter: 

/string of characters we want to find/ 

3-19 



XENIX User's Guide 

For example, the ed command: 

Itheirl 

is a context search sufficient to find the desired line. It will locate the next 
occurrence of the characters between the slashes (that is, "their"). Note 
that you do not need to enter the final slash. The above search command 
is the same as entering: 

Itheir 

The search command sets dot to the line on which the pattern is found and 
prints it for verification: 

to come to the aid of their party. 

"Next occurrence" means that ed starts looking for the string at line 
" . + I ," searches to the end of the buffer, then continues at line 1 and 
searches to line dot. (That is, the search "wraps around" from $ to 1.) It 
scans all the lines in the buffer until it either finds the desired line, or gets 
back to dot. If the given string of characters can't be found in any line, ed 
displays the error message: 

r !earch string not found 

Otherwise, ed displays the line it found. You can also search backwards 
in a file for search strings by using question marks instead of slashes. For 
example: 

?thing? 

searches backwards in the file for the word' 'thing" as does: 

?thing 

This is especially handy when you realize that the string you want is 
backwards from the current line. 

3-20 



ed 

The slash and question mark are the only characters you can use to del­
imit a context search, though you can use any character in a substitute 
command. If you get unexpected results using any of the characters: 

".$ [*\& 

read the section "Context and Regular Expressions." 

You can do both the search for the desired line and a substitution at the 
same time, as shown below: 

/their/ s/their/the/ p 

This displays: r to come to the aid of the party. 

The above command contains three separate actions. The first is a context 
search for the desired line, the second is the substitution, and the third is 
the printing of the line. 

The expression "/their/" is a context search expression. In their simplest 
form, all context search expressions are a string of characters surrounded 
by slashes. Context searches are interchangeable with line numbers, so 
they can be used by themselves to find and print a desired line, or as line 
numbers for some other command, like s. They were used both ways in 
the previous examples. 

Suppose the buffer contains the three familiar lines: 

Now is the time 
for all good men 
to come to the aid of their party. 

The ed line numbers: 

/Now/+l 
/good/ 
/party/-l 

are all context search expressions, and they all refer to the same line (line 

3-21 



XENIX User's Guide 

2). To make a change in line 2, enter: 

/Now/+ 1s/good/bad/ 

or 

/good/s/good/bad/ 

or 

/party / -1 s/good/bad/ 

e choice is dictated only by convenience. For instance, you could print 
all three lines by entering: 

/Now/'/party/p 

or 

/Now/,/Now/+2p 

or any similar combination. The first combination is better if you don't 
know how many lines are involved. 

The basic rule is that a context search expression is the same as a line 
number, so it can be used wherever a line number is needed. 

Suppose you search for: 

/listing/ 

and when the line is printed, you discover that it isn't the "listing" that 
you wanted, so it is necessary to repeat the search. You don't have to 
reenter the search, because the construction: 

// 

is a shorthand expression for" the previous pattern that was searched for" 
whatever it was. This can be repeated as many times as necessary. You 
can also go backwards, since: 

?? 

searches for the same pattern, but in the reverse direction. 

3-22 



ed 

You can also use / /, as the left side of a substitute command, to mean 
"the most recent pattern. " For example, examine: 

/listing/ 

ed prints the line containing "listing". 

s//good/p 

This changes "listing" to "good." To go backwards and change "list­
ing" to "good" enter: 

??s//good/ 

Exercise 

Experiment with context searching. Scan through a body of text with 
several occurrences of the same string of characters using the same con­
text search. 

Try using context searches as line numbers for the substitute, print, and 
delete commands. (Context searches can also be used with the r, W, and a 
commands.) 

Try context searching using ?text? instead of I text I. This scans lines in 
the buffer in reverse order instead of normal order, which is sometimes 
useful if you go too far while looking for a string of characters. It's an 
easy way to back up in the file you're editing. 

If you get unexpected results with any of the characters 

".$ [*\& 

read the section' 'Context and Regular Expressions." 

3.4.13 Changing and Inserting Text: c and i 

This section discusses the change (c) command, which is used to change 
or replace one or more lines, and the insert ( i ) command, which is used 
for inserting one or more lines. 

3-23 



XENIX User's Guide 

The c command is used to replace a number of lines with different lines 
that you type at the terminal. For example, to change lines ' , . + 1 ' , 
through "$" to something else, enter: 

.+l,$c 
type the lines of text you want here ... 

The lines you enter between the c command and the dot ( .) will replace 
the originally addressed lines. This is useful in replacing a line or several 
lines that have errors in them. 

If only one line is specified in the c command, then only that line is 
replaced. (You can enter as many replacement lines as you like.) Notice 
the use of a period to end the input. This works just like the period in the 
append command and must appear by itself on a new line. If no line 
number is given, the current line specified by dot is replaced. The value 
of dot is set to the last line you typed in. Note that the terminating period 
and the line referenced by dot are completely different: the first is used 
simply to terminate a command, the second points at a specific line of 
text. 

The i command is similar to the append command. For example: 

/string/i 
type the lines to be inserted here ... 

inserts the given text before the next line that contains "string." The text 
between i and the terminating period is inserted before the specified line. 
If no line number is specified, dot is used. Dot is set to the last line 
inserted. 

Exercise 

The c command is like a combination of delete followed by insert. 
Experiment to verify that: 

3-24 

start, end d 
i 
[text] 



is almost the same as: 

start,end c 
[text] 

These are not precisely the same, if the last line gets deleted. 

ed 

Experiment with a and i to see that they are similar, but not the same. 
Observe that: 

line-number a 
[text] 

appends after the given line, while: 

line-number i 
[text] 

inserts before it. If no line number is given, i inserts before line dot, 
while a appends after line dot. 

3.4.14 Moving Lines: m 

The move ( m ) command lets you move a group of lines from one place 
to another in the buffer. Suppose you want to put the first three lines of 
the buffer at the end instead. You could do it by entering: 

1,3w temp 
$rtemp 
1,3d 

where temp is the name of a temporary file. However, you can do it 
easily with the m command: 

1,3m$ 

This will move lines 1 through 3 to the end of the file. 

3-25 



XENIX User's Guide 

The general case is: 

start-line,end-linemafter-this-line 

There is a third line to be specified: the place where the moved text gets 
put. Of course, the lines to be moved can be specified by context 
searches. If you had: 

First paragraph 
end of first paragraph. 
Second paragraph 
end of second paragraph. 

you could reverse the two paragraphs like this: 

/Second/ ,lend of second/m/First/-1 

Notice the -1. The moved text goes after the line mentioned. Dot gets set 
to the last line moved. Your file will now look like this: 

Second paragraph 
end of second paragraph 
First paragraph 
end of first paragraph 

As another example of a frequent operation, you can reverse the order of 
two adjacent lines by moving the first line after the second line. Suppose 
that you are positioned at the first line. Then: 

m+ 

moves line dot to one line after the current line dot. If you are positioned 
on the second line: 

m--

moves line dot to one line after the current line dot. 

The m command is more efficient than writing, deleting and rereading. 
The main difficulty with the m command is that if you use patterns to 
specify both the lines you are moving and the target, you have to take 
care to specify them properly, or you may not move the lines you want. 
The result of a bad m command can be a mess. Doing the job one step at 
a time makes it easier for you to verify, at each step, that you 

3-26 



ed 

accomplished what you wanted. It is also a good idea to issue a w com­
mand before doing anything complicated; then if you make a mistake, it's 
easy to back up to where you were. 

For more information on moving text, see the section "Marking Your 
Spot in a File:k" in this chapter. 

3.4.15 Performing Global Commands: g and v 

The "global" commands g and v are used to execute one or more editing 
commands on all lines that either contain g or do not contain v, a 
specified pattern. 

For example, the command: 

g/XENIX/p 

prints all lines that contain the word "XENIX." The pattern that goes 
between the slashes can be anything that could be used in a line search or 
in a substitute command; exactly the same rules and limitations apply. 

For example: 

gj"\./p 

prints all the troff formatting commands in a file. For an explanation of 
the use of the caret C) and the backslash (\), see the section "Context and 
Regular Expressions" in this chapter. 

The v, command is identical to g, except that it operates on those lines 
that do not contain an occurrence of the pattern. (Mnemonically, the "v" 
can be thought of as part of the word "in verse". 

For example: 

vj"\/p 

prints all the lines that do not begin with a period (i.e., the actual text 
lines). 

Any command can follow g or v. For example, the following command 
deletes all lines that begin with "." 

g/"\./d 

3-27 



XENIX User's Guide 

This command deletes all empty lines: 

g/"$/d 

Probably the most useful command that can follow a global command is 
the substitute command. For example, we could change the word 
"Xenix" to "XENIX" everywhere, and verify that it really worked, with: 

g/Xenix/s/ /XENIX/gp 

Notice that we used / / in the substitute command to mean "the previous 
pattern" in this case, "Xenix." The p command executes on each line 
that matches the pattern, not just on those in which a substitution took 
place. 

The global command makes two passes over the file. On the first pass, all 
lines that match the pattern are marked. On the second pass, each marked 
line is examined in tum, dot is set to that line, and the command exe­
cuted. This means that it is possible for the command that follows a g or 
v command to use addresses, set dot, and so on, quite freely. For exam­
ple: 

g/"\.P/+ 

prints the line that follows each" .P" command (the signal for a new 
paragraph in some formatting packages). Remember that plus (+) means 
"one line past dot." And: 

g/topic/? '\ .R?p 

searches for each line that contains the word "topic" scans backwards 
until it finds a line that begins with a ".R" (a heading) and prints it, thus 
showing the headings under which "topic" is mentioned. Finally: 

g/ "\ .EQ/+ ,/'\ .EN/-p 

prints all the lines that lie between lines beginning with ".EQ" and 
".EN" formatting commands. 

The g and v commands can also be preceded by line numbers, in which 
case the lines searched are only those in the range specified. 

3-28 



ed 

It is possible to give more than one command under the control of a glo­
bal command. For example, suppose the task is to change "x" to "y" 
and "a" to "b" on all lines that contain "thing." Then: 

g/thing/s/x/y/\ 
s/a/b/ 

is sufficient. The backs lash (\) signals the g command that the set of 
commands continues on the next line; the g command terminates on the 
first line that does not end with a backslash. 

Note that you cannot use a substitute command to insert a new line within 
a g command. Watch out for this. 

The command: 

g/x/s//y/\ 
s/a/b/ 

does not work as you might expect. The remembered pattern is the last 
pattern that was actually executed, so sometimes it will be "x" (as 
expected), and sometimes it will be "a" (not expected). You must spell it 
out, as shown: 

g/x/s/x/y /\ 
s/a/b/ 

It is also possible to execute a, C and i commands as part of a global com­
mand. As with other multiline constructions, add a backslash at the end of 
each line except the last. Thus, to add an ".nf" and ".sp" command 
before each ".EQ" line, enter: 

g/"\.EQ/i\ 
.nf\ 
.sp 

3-29 



XENIX User's Guide 

There is no need for a final line containing a period ( .) to terminate the i 
command, unless there are further commands to be executed under the 
global command. 

3.4.16 Displaying Tabs and Control Characters: I 

ed provides two commands for printing the contents of the text you are 
editing. You should already be familiar with p, in combinations like: 

1,$p 

o print all the lines you are editing, or: 

s/abc/ def/p 

to change "abc" to "def" on the current line. Less familiar is the "list" 
( I) command which gives slightly more information than p. In particular, 
I makes visible characters that are normally invisible, such as tabs and 
backspaces. If you list a line that contains some of these, I prints each tab 
as ">" and each backspace as "<" This makes it much easier to correct 
the sort of entering mistake that inserts extra spaces adjacent to tabs, or 
inserts a backspace followed by a space. 

The I command also "folds" long lines for printing. Any line that 
exceeds 72 characters is printed on multiple lines; each printed line 
except the last is terminated by a backslash (\), so you can tell it was 
folded. This is useful for printing lines longer than the width of your ter­
minal screen. 

Occasionally, the I command will print a string of numbers preceded by a 
backslash, such as \07 or \16. These combinations are used to make visi­
ble characters that normally don't print, like form feed, vertical tab, or 
bell. Each backslash-number combination represents a single ASCII char­
acter. Note that numbers are octal and not decimal. When you see such 
characters, be aware that they may have surprising meanings when 
printed on some terminals. Often, their presence indicates an error in 
entering, because they are rarely used. 

3-30 



ed 

3.4.17 Undoing Commands: u 

Occasionally, you will make a substitution in a line, only to realize too 
late that it was a mistake. The undo ( u ) command, lets you "undo" the 
last 
substitution. Thus the last line that was substituted can be restored to its 
previous state by entering: 

u 

This command does not work with the g and v commands. 

3.4.18 Marking Your Spot in a File: k 

The mark command, k, provides a facility for marking a line with a par­
ticular name, so that you can later reference it by name, regardless of its 
actual line number. This can be handy for moving lines and keeping track 
of them as they move. For example: 

kx 

marks the current line with the name "x." If a line number precedes the 
k, that line is marked. (The mark name must be a single lowercase letter.) 
You can refer to the marked line with the notation: 

x 

Note the use of the single quotation mark ( ~) here. Marks are very useful 
for moving things around. Find the first line of the block to be moved and 
then mark it with: 

ka 

Then find the last line and mark it with: 

kb 

3-31 



XENIX User's Guide 

Go to the place where the text is to be inserted and enter: 

"a,"bm. 

A line can have only one mark name associated with it at any given time. 

3.4.19 Transferring Lines: t 

We mentioned earlier the idea of saving lines that are hard to type or used 
often, to cut down on entering time. ed provides another command, 
called t (for transfer) for making a copy of a group of one or more lines at 
any point. This is often easier than writing and reading. 

The t command is identical to the m command, except that instead of 
moving lines it simply duplicates them at the place you named. Thus: 

1,$t$ 

duplicates the entire contents that you are editing. 

A common use for t is to create a series of lines that differ only slightly. 
For example, you can enter (italics are comments): 

a 
Now is the time for all good men to come to the aid of their party. 

t. 
s/men/women/ 
t. 
s/Now is/yesterday was/ 

Your file will look like this: 

[make a copy] 
[change it a bit] 
[make third copy] 
[change it a bit] 

Now is the t.i.rre for all gocxi rren to ccrre to the aid of their party. 
Now is the t.i.rre for all gocxi wcrren to ccrre to the aid of their party. 
Yesterday was the t.i.rre for all gocxi wcrren to ccrre to the aid of their party. 

3-32 



ed 

3.4.20 Escaping to the Shell: ! 

Sometimes it is convenient to temporarily escape from the editor to exe­
cute a XENIX command without leaving the editor. The shell escape (!) 
command, provides a way to do this. 

If you enter: 

!command 

your current editing state is suspended, and the XENIX command you 
asked for is executed. When the command finishes, ed will signal you by 
printing another exclamation (!). At that point, you can resume editing. 

3.5 Context and Regular Expressions 

You may have noticed that things don't work right when you use charac­
ters such as the period ( . ), the asterisk (*), and the dollar sign ($) in con­
text searches and with the substitute command. The reason is rather com­
plex, although the solution to the problem is simple. ed treats these char­
acters as special. For instance, in a context search or the first string of the 
substitute command, the period (.) means "any character" not a period, 
so: 

/x.y/ 

means a line with an "x" any character, and a "y" not just a line with an 
"x" a period, and a "y" A complete list of the special characters that can 
cause problems follows: 

".$[*\/ 

The next few subsections discuss how to use these characters to describe 
patterns of text in search and substitute commands. These patterns are 
called "regular expressions" and occur in several other important XENIX 
commands and utilities, including grep(C), sed(C) (See the XENIX User's 
Reference ). 

Recall that a trailing g after a substitute command causes all occurrences 
to be changed. With: 

s/this/that/ 

3-33 



XENIX User's Guide 

and 

s/this/that/ g 

The first command replaces the first "this" on the line with "that." If 
there is more than one "this" on the line, the second form with the trail­

- ing g changes all of them. 

Either form of the s command can be followed by p or I to print or list the 
contents of the line. For example, all of the following are legal and mean 
slightly different things: 

s/this/that/ p 
s/this/that/l 
s/this/that/ gp 
s/this/that/ gl 

Make sure you know what the differences are. 

Of course, any s command can be preceded by one or two line numbers to 
specify that the substitution is to take place on a group of lines. Thus: 

1,$s/mispell/misspell/ 

changes the first occurrence of "mispell" to "misspell" in each line of 
the file. But: 

1 ,$s/mispell/misspell/ g 

changes every occurrence in each line (and this is more likely to be what 
you wanted). 

If you add a p or I to the end of any of these substitute commands, only 
the last line changed is printed, not all the lines. We will talk later about 
how to print all the lines that were modified. 

3.5.1 Period: (.) 

The first metacharacter that we will discuss is the period ( .). On the left 
side of a substitute command, or in a search, a period stands for any sin­
gle character. Thus the search: 

/x.y/ 

3-34 



ed 

finds any line where "x" and "y" occur separated by a single character, 
as in: 

x+y 
x-y 
x y 
xzy 

and so on. 

Since a period matches a single character, it gives you a way to deal with 
funny characters printed by l. Suppose you have a line that appears as: 

th\07is 

when printed with the I command, and that you want to get rid of the \07, 
which represents an ASCII bell character. 

The most obvious solution is to enter: 

s/\07// 

but this will fail. Another solution is to retype the entire line. This is 
guaranteed, and is actually quite reasonable if the line in question isn't 
too big. But for a very long line, reentering is not the best solution. This 
is where the metacharacter " .. " comes in handy. Since \07 really 
represents a single character, if we enter: 

s/th.is/this/ 

the job is done. The period matches the mysterious character between the 
"h" and the "i" whatever it is. 

Since the period matches any single character, the command: 

s/./,! 

converts the first character on a line into a comma (,), which very often is 
not what you intended. The special meaning of the period can be 
removed by preceding it with a backslash. 

As is true of many characters in ed, the period ( . ) has several meanings, 
depending on its context. This line shows all three: 

.s/././ 

3-35 



XENIX User's Guide 

The first period is the line number of the line we are editing, which is 
called "dot." The second period is a metacharacter that matches any sin­
gle character on that line. The third period is the only one that really is an 
honest, literal period. (Remember that a period is also used to terminate 
input from the a and i commands.) On the right side of a substitution, the 
period (.) is not special. If you apply this command to the line: 

I Now is the time, 

the result is: 

I ,ow is the time, 

which is probably not what you intended. To change the period at the end 
of the sentence to a comma, enter: 

SAl'! 

The special meaning of the period can be removed by preceding it with a 
backslash. 

3.5.2 Backslash: \ 

Since a period means "any character" the question naturally arises: what 
do you do when you really want a period? For example, how do you con­
vert the line: 

I Now is the time, 

3-36 



ed 

into 

the time? 

The backslash (\), turns off any special meaning that the next character 
might have; in particular, "\" converts the "." from a 
"match anything" 
into a literal period, so you can use it to replace the period in "Now is the 
time." like this: 

s/\./?/ 

The pair of characters "\" is considered by ed to be a single real period. 

The backslash can also be used when searching for lines that contain a 
special character. Suppose you are looking for a line that contains: 

.DE 

at the start of a line. The search: 

/.DE/ 

isn't adequate, for it will find lines like: 

JADE 
FADE 
MADE 

because the "." matches the letter "A" on each of the lines in question. 
But if you enter: 

/\.DE/ 

only lines that contain" .DE" are found. 

The backslash can be used to tum off special meanings for characters 
other than the period. For example, consider finding a line that contains a 
backslash. The search: 

/\/ 

3-37 



XENIX User's Guide 

will not work, because the backslash (\) isn't a literal backslash, but 
instead means that the second slash (f) no longer delimits the search. By 
preceding a backslash with another backslash, you can search for a literal 
backslash: 

/\\/ 

You can search for a forward slash (f) with: 

/\// 

The backslash turns off the special meaning of the slash immediately fol­
lowing, so that it doesn't terminate the slash-slash construction prema­
turely. 

A miscellaneous note about backslashes and special characters: you can 
use any character to delimit the pieces of an s command; there is nothing 
sacred about slashes. (But you must use slashes for context searching.) 
For instance, in a line that contains several slashes already, such as: 

I Ilexec Iisys. fort-go I I etc ... 

you could use a colon as the delimiter. To delete all the slashes, enter: 

s:/::g 

The result is: 

exec sys.fort.go etc ... 

3-38 



ed 

When you are adding text with a or i or c, the backslash has no special 
meaning, and you should only put in one backslash for each one you want. 

Exercise 

Find two substitute commands, each of which converts the line: 

\x\.\y 

into the line: 

\x\y 

Here are several solutions; you should verify that each works: 

s/\\\// 
s/x . ./x/ 
s/ .. y/y/ 

3.5.3 Dollar Sign: $ 

The dollar sign "$" stands for "the end of the line." Suppose you have 
the line: 

the 

and you want to add the word "time" to the end. Use the dollar sign ($) 
as shown below: 

s/$/ time/ 

to get: 

the time 

3-39 



XENIX User's Guide 

A space is needed before "time" in the substitute command, or you will 
get: 

is thetime 

You can replace the second comma in the following line with a period 
without altering the first. 

Now is the time, for all good men, 

The command needed is: 

s/,$/./ 

to get: 

Now is the time, for all good men. 

The dollar sign ($), here, provides context to make specific which comma 
we mean. Without it, the s command would operate on the first comma to 
produce: 

Now is the time. for all good men, 

3-40 



ed 

To convert: 

the time. 

into: 

the time? 

as we did earlier, we can use: 

s/.$/?/ 

Like the period ( . ), the dollar sign ($) has multiple meanings depending 
on context. In the following line: 

$s/$/$/ 

the first "$" refers to the last line of the file, the second refers to the end 
of that line, and the third is a literal dollar sign to be added to that line. 

3.5.4 Caret: A 

The caret (") stands for the beginning of the line. For example, suppose 
you are looking for a line that begins with "the." If you enter: 

/the/ 

you will probably find several lines that contain "the" in the middle 
before arriving at the one you want. But, by entering: 

(the/ 

you narrow the context, and thus arrive at the desired line more easily. 

3-41 



XENIX User's Guide 

The other use of the caret (") enables you to insert something at the 
beginning of a line. For example: 

sri I 

places a space at the beginning of the current line. 

Metacharacters can be combined. To search for a line that contains only 
the characters: 

.P 

you can use the command: 

r\.p$1 

3.5.5 Star: * 

Suppose you have a line that looks like this: 

text x y text 

where "text" stands for lots of text, and there are an indeterminate 
number of spaces between the "x" and the "y." Suppose the job is to 
replace all the spaces between "x" and "y" with a single space. The 
line is too long to retype, and there are too many spaces to count. 

This is where the metacharacter "star" (*) comes in handy. A character 
followed by a star stands for as many consecutive occurrences of that 
character as possible. To refer to all the spaces at once, enter: 

six *y/x y/ 

The " " means "as many spaces as possible." Thus "x *y" means an 
"x" as many spaces as possible, then a "y" 

The star can be used with any character, not just a space. If the original 
example was: 

text x--------y text 

3-42 



ed 

then all minus signs (-) can be replaced by a single space with the com­
mand: 

s/x-*y/x y/ 

Finally, suppose that the line was: 

text x .................. y text 

If you enter: 

s/x.*y/x y/ 

The result is unpredictable. If there are no other x's or y's on the line, the 
substitution will work, but not necessarily. The period matches any sin­
gle character so the ". *" matches as many single characters as possible, 
and unless you are careful, it can remove more of the line than you 
expected. 
For example, if the line is: 

x text x ......... y text y 

then entering: 

s/x.*y/x y/ 

takes everything from the first "x" to the last "y" which, in this exam­
ple, is more than you wanted. 

The solution is to tum off the special meaning of the period ( .) with the 
backslash (\): 

s/x\. *y/x y/ 

Now the substitution works, for "\ *" means "as many periods as possi­
ble." 

There are times when the pattern 
example, to change: 

" *" is exactly what you want. For 

~ Now is the time for all good men .... 

3-43 



XENIX User's Guide 

into: 

the time. 

use" . *" to remove everything after the "for." 

s/ for.*/./ 

There are a couple of additional pitfalls associated with the star (*). Most 
notable is the fact that "as many as possible" means zero or more. The 
fact 
that zero is a legitimate possibility, is sometimes rather surprising. For 
example, if our line contained: 

xyDtextDxDDyDtext 

where the squares represent spaces, and we entered: 

S/XD*Y/XDy/ 

the first "xy" matches this pattern, for it consists of an "x" zero spaces, 
and a "y." The result is that the substitute acts on the first "xy" and 
does not touch the later one that actually contains some intervening 
spaces. 

The way around this is to specify a pattern like: 

/XDD*y/ 

which says an "x" a space, then as many more spaces as possible, and 
then a "y" (i.e., one or more spaces). 

The other pitfall associated with the star (*) again relates to the fact that 
zero is a legitimate number of occurrences of something followed by a 
star. The command: 

s/x*/y/g 

3-44 



ed 

when applied to the line: r abedef 

produces: r yaybyeydyeyfy 

which is almost certainly not what was intended. The reason for this is 
that zero is a legitimate number of matches, and there are no x's at the 
beginning of the line (so that gets converted into a "y," nor between the 
"a" and 
the "b" (so that gets converted into a "y," and so on. If you don't want 
zero matches, enter: 

s/xx*/y/g 

since "xx*" is one or more x's. 

3.5.6 Brackets: [ and] 

Suppose that you want to delete any numbers that appear at the beginning 
of all lines of a file. You might try a series of commands like: 

1,$s/"1 *// 
1,$s/"2*// 
1,$s/"3*// 

3-45 



XENIX User's Guide 

and so on, but this is clearly going to take forever if the numbers are long. 
Unless you want to repeat the commands over and over, until finally all 
the numbers are gone, you must get all the digits on one pass. That is the 
purpose of the brackets. 

The construction: 

[0123456789] 

matches any single digit; the whole thing is called a "character class." 
With a character class, the job is easy. The pattern "[0123456789]*" 
matches zero or more digits (an entire number), so: 

1 ,$s/" [0 123456789] * II 

deletes all digits from the beginning of all lines. 

Any characters can appear within a character class, and there are only 
three special characters C, ], and -) inside the brackets; even the 
backs lash doesn't have a special meaning. To search for special charac­
ters, for example, you can enter: 

1[.\$"[ ]1 

It's a nuisance to have to spell out the digits, so you can abbreviate them 
as [0-9]; similarly, [a-z] stands for the lowercase letters, and [A-Z] for 
uppercase. 

Within [], the" [" is not special. To get a "]" (or a "-" into a character 
class, make it the first character. 

You can also specify a class that means "none of the following charac­
ters." This is done by beginning the class with a caret ("). For example: 

["0-9] 

3-46 



ed 

stands for "any character except a digit." Thus, you might find the first 
line that doesn't begin with a tab or space with a search like: 

(["(space )(tab )]/ 

Within a character class, the caret has a special meaning only if it occurs 
at the beginning. Verify that: 

([""]/ 

finds a line that doesn't begin with a caret. 

3.5.7 Ampersand: & 

To save entering, the ampersand (&) can be used in substitutions to sig­
nify the string of text that was found on the left side of a substitute com­
mand. Suppose you have the line: r Now is the time 

and you want to make it: r Now is the best time 

You can enter: 

s/the/the best/ 

It's unnecessary to repeat the word "the." The ampersand (&) eliminates 
this repetition. On the right side of a substitution, the ampersand means 
, 'whatever was just matched' , so you can enter: 

s/thel & best/ 

3-47 



XENIX User's Guide 

and the ampersand will stand for' 'the." This isn't much of a saving if the 
thing matched is just "the" but if the match is very long, or if it is some­
thing like ". *" which matches a lot of text, you can save some tedious 
entering. There is also much less chance of making an entering error in 
the replacement text. For example, to put parentheses in a line, regardless 
of its length, enter: 

sf. */(&)/ 

The ampersand can occur more than once on the right side. For example: 

s/the/& best and & worst/ 

makes: 

Now is the best and the worst time 

and: 

s/.*/&? &!!/ 

converts the original line into: 

Now is the time? Now is the time! ! 

To get a literal ampersand, use the backslash to tum off the special mean­
ing. For example: 

s/ampersandM/ 

converts the word into the symbol. The ampersand is not special on the 
left side of a substitute command, only on the right side. 

3-48 



ed 

3.5.8 Substituting New Lines 

ed provides a facility for splitting a single line into two or more shorter 
lines by "substituting in a newline." For example, suppose a line has 
become unmanageably long because of editing. If it looks like: 

... .text xy text.. ... 

you can break it between the' 'x" and the' 'y" like this: 

s/xy/x\ 
y/ 

This is actually a single command, although it is entered on two lines. 
Because the backslash (\) turns off special meanings, a backslash at the 
end of a line makes the new line there no longer special. 

You can, in fact, make a single line into several lines with this same 
mechanism. As an example, consider italicizing the word "very" in a 
long line by splitting "very" onto a separate line, and preceding it with 
the formatting command ".1." Assume the line in question looks like 
this: r text 

a very big text 

The command: 

s/ very " 
.1\ 
very \ 
/ 

converts the line into four shorter lines, preceding the word "very" with 
the line ".I" and eliminating the spaces around the "very" at the same 
time. 

When a new line is substituted in a string, dot is left at the last line 
created. 

3-49 



XENIX User's Guide 

3.5.9 Joining Lines 

Lines may be joined together, with the j command. Assume that you are 
given the lines: 

the time 
I Now is 

Suppose that dot is set to the first line. Then the command: 

j 

joins them together to produce: 

I Now is the time 

No blanks are added, which is why a blank was shown at the beginning of 
the second line. 

All by itself, a j command joins the lines signified by dot and dot + 1, but 
any contiguous set of lines can be joined. Just specify the starting and 
ending line numbers. For example: 

1,$jp 

joins all the lines in a file into one big line and prints it. 

3.5.10 Rearranging a Line: \( and \) 

Recall that "&" is shorthand for whatever was matched by the left side 
of an s command. In much the same way, you can capture separate pieces 
of what was matched. The only difference is that you have to specify on 
the left side just what pieces you're interested in. 

3-50 



ed 

Suppose that you have a file of lines that consist of names in the fonn: 

Smith, A. B. 
Jones, C. 

and so on, and you want the initials to precede the name, as in: 

A. B. Smith 
C. Jones 

It is possible to do this with a series of editing commands, but it is tedious 
and error-prone. 

The alternative is to "tag" the pieces of the pattern (in this case, the last 
name, and the initials), then rearrange the pieces. On the left side of a 
substitution, if part of the pattern is enclosed between \ ( and \), whatever 
matched that part is remembered, and available for use on the right side. 
On the right side, the symbol, "\ 1 " refers to whatever matched the first 
\( ... \) pair; "\2" to the second \( ... \), and so on. 

The command: 

1,$s/'\([.*]\), *\(.*\)/\2 \ 1/ 

although hard to read, does the job. The first \( ... \), matches the last 
name, which is any string up to the comma; this is referred to on the right 
side with "\ 1." The second \( ... \), is whatever follows the comma and 
any spaces, and is referred to as "\2." 

With any editing sequence this complicated, it is unwise to simply run it 
and hope. The global commands, g and· v, provide a way for you to print 
exactly those lines which were affected by the substitute command, and 
thus, verify that it did what you wanted in all cases. 

3.6 Speeding Up Editing 

One of the most effective ways to speed up your editing is knowing what 
lines will be affected by a command. If you do not specify the lines it is to 
act on, and on what line you will be positioned (i.e., the value of dot) 
when a command finishes, your editing speed is slowed. If you can edit 
without specifying unnecessary line numbers, you can save a lot of enter­
ing. 

3-51 



XENIX User's Guide 

For example, if you issue a search command like: 

/thing/ 

you are left pointing at the next line that contains "thing." Then no 
address is required with commands like s, to make a substitution on that 
line, or p, to print it, or I, to list it, or d, to delete it, or a, to append text 
after it, or c, to change it, or i, to insert text before it. 

What happens if there is no occurrence of "thing." Dot is unchanged. 
This is also true if the cursor was on the only occurrence of' 'thing" when 
you issued the command. The same rules hold for searches that use? ... ?; 
the only difference is the direction in which you search. 

The delete command, d, leaves dot pointing at the line that followed the 
last deleted line. When the line dollar ($) gets deleted, however, dot 
points at the new line $. 

I 

The line-changing commands a, c, and i, by default, all affect the current 
line. If you give no line number with them, a appends text after the 
current line, C changes the current line, and i inserts text before the 
current line. 

The a, c, and icommands behave identically in one respect; when you 
stop appending, changing or inserting, dot points at the last line entered. 
This is exactly what you want when entering and editing on the fly. For 
example, you can enter: 

3-52 

a 
text 
botch (minor error) 

s/botch/correct/ (fix botched line) 
a 
more text 



ed 

without specifying any line number for the substitute command or for the 
second append command. Or you can enter: 

a 
text 
horrible botch (major error) 

c (replace entire line) 
fixed up line 

Experiment to determine what happens if you add no lines with an a, C, or 
i command. 

The r command reads a file into the text being edited, at the end if you 
give no address, or after the specified line if you do. In either case, dot 
points at the last line read in. Remember that you can even enter: 

Or 

to read a file in at the beginning of the text. (You can also enter Oa or 1 i 
to start adding text at the beginning.) 

The w command writes out the entire file. If you precede the command 
by one line number, that line is written out. If you precede it by two line 
numbers, that range of lines is written out. The w command does not 
change dot: the current line remains the same, regardless of what lines 
are written out. This is true even if you enter something like: 

/'\ .AB/,/,\ .AE/w abstract 

which involves a context search. 

(Since the w command is so easy to use, you should save what you are 
editing regularly, as you go along just in case the system crashes, or in 
case you accidentally delete what you're editing.) 

The general rule is simple: you are left sitting on the last line changed; if 
there were no changes, then dot is unchanged. To illustrate, suppose that 

3-53 



XENIX User's Guide 

there are three lines in the buffer, and the line given by dot is the middle 
one: r xl x2 

x3 

-,+s/x/y/p 

prints the third line, which is the last one changed. But if the three lines 
had been: r xl y2 

y3 

and the same command had been issued while dot pointed at the second 
line, only the first line would be changed and printed, and that is where 
dot would be set. 

3.6.1 Semicolon: ; 

Searches with 1 .. ,/ and ? ... ? start at the current line and move forward or 
backward, respectively, until they either find the pattern, or get back to 
the current line. Sometimes, this is not what you want. Suppose, for 
example, that the buffer contains lines like this: 

ab 

bc 

3-54 



ed 

Starting at line 1, you would expect the command: 

/a/,/b/p 

to print all the lines from the "ab" to the "bc" inclusive. This is not 
what happens. Both searches (for "a" and for "b" start from the same 
point, and thus, they both find the line that contains "ab." As a result, a 
single line is printed. Worse, if there had been a line with a "b" in it 
before the "ab" line, then the print command would be in error, since the 
second line number would be less than the first, and it is illegal to try to 
print lines in reverse order. 

This is because the comma separator for line numbers doesn't set dot as 
each address is processed; each search starts from the same place. In ed, 
the semicolon (;) can be used just like the comma, with the single 
difference that use of a semicolon forces dot to be set at the time the semi­
colon is encountered, as the line numbers are being evaluated. In effect, 
the semicolon "moves" dot. Thus, in our example above, the command: 

/a/;/b/p 

prints the range of lines from "ab" to "bc" because after the "a" is 
found, dot is set to that line, and then "b" is searched for, starting beyond 
that line. 

This property is most useful in a very simple situation. Suppose you want 
to find the second occurrence of "thing." You could enter: 

/thing/ 
// 

but this prints the first occurrence as well as the second, and is a nuisance 
when you know very well that it is only the second one you're interested 
in. The solution is to enter: 

/thing/;// 

This says "find the first occurrence of "thing" set dot to that line, then 
find the second occurrence and print only that' ' . 

Closely related is searching for the second to last occurrence of some­
thing, as in: 

?something?;?? 

3-55 



XENIX User's Guide 

Finally, bear in mind that if you want to find the first occurrence of some­
thing in a file, starting at an arbitrary place within the file, it is not 
sufficient to enter: 

1;/thing/ 

because, if "thing" occurs on line 1, it will not be found. The command: 

O;/thing/ 

will work because it starts the search at line 1. This is one of the few 
places where 0 is a legal line number. 

3.6.2 Interrupting the editor 

As a final note on what dot gets set to, you should be aware that if you 
press the INTERRUPT key while ed is executing a command, your file is 
restored, as much as possible, to what it was before the command began. 
Naturally, some changes are irrevocable; if you are reading in or writing 
out a file, making substitutions, or deleting lines. These will be stopped in 
some unpredictable state in the middle (which is why it usually is unwise 
to stop them). Dot mayor may not be changed. 

If you are using the print command, dot is not changed until the printing 
is done. Thus, if you decide to print until you see an interesting line, and 
then press INTERRUPT, to stop the command, dot will not be set to that 
line or even near it. Dot is left where it was when the p command was 
started. 

3.7 Cutting and Pasting with the editor 

This section describes how to manipulate pieces of files, individual lines 
or groups of lines. 

3-56 



ed 

3.7.1 Inserting One File Into Another 

Suppose you have a file called memo, and you want the file called table to 
be inserted just after a reference to Table 1. That is, in memo, somewhere 
is a line that reads: r Table 1 shows that 

and the data contained in table has to go there. 

To put table into the correct place in the file edit memo, find "Table 1" 
and add the file table right there: 

ed memo 
/fable 1/ 
response from ed 
.r table 

The critical line is the last one. The r command reads a file; here you 
asked for it to be read in right after line dot. An r command, without any 
address, adds lines at the end, so it is the same as "$r." 

3.7.2 Writing Out Part of a File 

The other side of the coin is writing out part of the document you're edit­
ing. For example, you may want to split the table from the previous 
example into a separate file so it can be formatted and tested separately. 
Suppose that in the file being edited we have: 

.TS 
[lots of stuff] 
.TE 

3-57 



XENIX User's Guide 

which is the way a table is set up for the tbl program. To isolate the table 
in a separate file called table, first find the start of the table (the" .TS" 
line), then write out the interesting part. For example, first enter: 

(\.TS/ 

This prints out the found line: 

.TS 

Next enter: 

.,/'\.TE/w table 

and the job is done. Note that you can do it all at once with: 

/,,\.TS/;/"\.TE/w table 

The point is that the w command can write out a group of lines, instead of 
the whole file. In fact, you can write out a single line if you like; just give 
one line number instead of two. If you have just entered a complicated 
line and you know that it (or something like it) is going to be needed later, 
then save it, do not retype it. For example, in the editor, enter: 

3-58 

a 
lots of stuff 
horrible line 

.w temp 
a 
more stuff 

.r temp 
a 
more stuff 



ed 

3.8 Editing Scripts 

If a fairly complicated set of editing operations is to be done on a whole 
set of files, the easiest thing to do is to make up a "script" (i.e., a file that 
contains the operations you want to perfonn, then apply this script to each 
file in tum). 

For example, suppose you want to change every "Xenix" to "XENIX" 
and every "USA" to "America" in a large number of files. Enter the fol­
lowing lines into the file script: 

g/Xenix/s/ /XENIX/g 
g/USA/s//America/g 
w 
q 

Now you can enter: 

ed - file 1 <script 
ed - file2 <script 

This causes ed to take its commands from the prepared file script. Notice 
that the whole job has to be planned in advance, and that by using the 
XENIX shell command interpreter, you can cycle through a set of files 
automatically. The dash (-) suppresses unwanted messages from ed. 

When preparing editing scripts, you may need to place a period as the 
only character on a line to indicate tennination of input from an a or i 
command. This is difficult to do in ed, because the period you type will 
tenninate input rather than be inserted in the file. U sing a backslash to 
escape the period won't work either. One solution is to create the script 
using a character such as the at-sign (@), to indicate end of input. Then, 
later, use the following command to replace the at-sign with a period: 

s/"@$/./ 

3-59 



XENIX User's Guide 

3.9 Summary of Commands 

This following is a list of all ed commands. The general form of ed com­
mands is the command name, preceded by one or two optional line 
numbers a.Tld, in the case of e, f, r, and w, followed by a filename. Only 
one command is allowed per line, but a p command may follow any other 
command (except e, f, r, w, and q). 

3-60 

Command Description 

a Appends, i.e., adds lines to the buffer (at line 
dot, unless a different line is specified). 
Appending continues until a period is entered 
on a new line. The value of dot is set to the last 
line appended. 

c Changes the specified lines to the new text 
which follows. The new lines are terminated 
by a period on a new line, as with a. If no lines 
are specified, replace line dot. Dot is set to the 
last line changed. 

d Deletes the lines specified. If none are 
specified, deletes line dot. Dot is set to the first 
undeleted line following the deleted lines 
unless dollar ($) is deleted, in which case dot is 
set to dollar. 

e Edits a new file. Any previous contents of the 
buffer are thrown away, so issue a w command 
first. 

f Prints the remembered filename. If a name fol­
lows f, then the remembered name is set to it. 

g The command g/ string /commands executes 
commands on those lines that contain string, 
which can be any context search expression. 

Inserts lines before specified line (or dot) until 
a single period is typed on a new line. Dot is 
set to the last line inserted. 

Lists lines, making visible nonprinting ASCII 
characters and tabs. Otherwise similar to p. 



m 

p 

q 

r 

s 

v 

Moves lines specified to after the line named 
after m. Dot is set to the last line moved. 

Prints specified lines. If none are specified, 
print the line specified by dot. A single line 
number is equivalent to a command. A single 
RETURN prints ".+ 1" the next line. 

Quits ed. Your work is not saved unless you 
first give a w command. Give it twice in a row 
to abort edit. 

Reads a file into buffer (at end unless specified 
elsewhere). Dot is set to the last line read. 

The command "s/ string] I string2 I" substi­
tutes the pattern matched by string] with the 
string specified by string2 in the specified lines. 
If no lines are specified, the substitution takes 
place only on the line specified by dot. Dot is 
set to the last line in which a substitution took 
place, which means that if no substitution takes 
place, dot remains unchanged. The s command 
changes only the first occurrence of string] on 
a line; to change multiple occurrences on a 
line, enter a g after the final slash. 

Transfers specified lines to the line named after 
t. Dot is set to the last line moved. 

The command vi string I commands executes 
commands on those lines that do not contain 
string. 

v The command vi string I commands executes 
commands on those lines that do not contain 
string. 

u Undoes the last substitute command. 

w Writes out the editing buffer to a file. Dot 
remains unchanged. 

= Prints value of dot. (An equal sign by itself 
prints the value of $.) 

!command The line !command causes command to be exe­
cuted as a XENIX command. 

ed 

3-61 



XENIX User's Guide 

/string/ 

?string? 

3-62 

Context search. Searches for next line which 
contains this string of characters and prints it. 
Dot is set to the line where string was found. 
The search starts at .+1, wraps around from $ to 
1, and continues to dot, if necessary . 

Context search in reverse direction. Starts 
search at .-1 , scans to 1, wraps around to $. 



Chapter 4 

tnail 

4.1 Introduction 4-1 

4.2 Demonstration 4-2 
4.2.1 Composing and Sending a Message 4-2 
4.2.2 Reading mail 4-3 
4.2.3 Leaving mail 4-4 

4.3 Basic Concepts 4-5 
4.3.1 Mailboxes 4-5 
4.3.2 Messages 4-6 
4.3.3 Modes 4-6 
4.3.4 Message-Lists 4-8 
4.3.5 Headers 4-9 
4.3.6 Command Syntax 4-10 

4.4 Using mail 4-10 
4.4.1 Entering and Exiting mail 4-11 
4.4.2 Sending mail 4-11 
4.4.3 Sending Mail to Remote Sites 4-12 
4.4.4 Reading mail 4-13 
4.4.5 Disposing of mail 4-14 
4.4.6 Composing mail 4-14 
4.4.7 Forwarding mail 4-15 
4.4.8 Replying to mail 4-16 
4.4.9 Specifying Messages 4-16 
4.4.10 Creating Mailing Lists 4-16 
4.4.11 Setting Options 4-17 

4.5 Commands 4-17 
4.5.1 Getting Help: help and? 4-17 
4.5.2 Reading mail: p, +, -, and restart 4-18 
4.5.3 Finding Out the Number of the Current Message: = 4-19 
4.5.4 Displaying the First Five Lines: t 4-20 
4.5.5 Displaying Headers: h 4-20 
4.5.6 Deleting Messages: d and dp 4-21 
4.5.7 Undeleting Messages: u 4-21 



4.5.8 Leaving mail: q and x 4-21 
4.5.9 Saving Your mail: s 4-22 
4.5.10 Saving Your mail: w 4-22 
4.5.11 Saving Your mail: mb 4-22 
4.5.12 Saving Your mail: ho 4-23 
4.5.l3 Printing Your mail on the Lineprinter: 1 4-23 
4.5.l4 Sending mail: m 4-23 
4.5.15 Replying to mail: rand R 4-23 
4.5.16 Forwarding mail: f and F 4-24 
4.5.17 Creating mailing Lists: a 4-24 
4.5.18 Setting and Unsetting Options: se and uns 4-25 
4.5.19 Editing a Message: e and v 4-25 
4.5.20 Executing Shell Commands: sh and! 4-25 
4.5.21 Finding the Number of Characters in a Message: si 4-26 
4.5.22 Changing the Working Directory: cd 4-26 
4.5.23 Reading Commands From a File: so 4-26 

4.6 Leaving Compose Mode Temporarily 4-27 
4.6.1 Getting Help: -? 4-27 
4.6.2 Printing the Message: -p 4-27 
4.6.3 Editing the Message: -e and -v 4-27 
4.6.4 Editing Headers: -t, -c, 0, -s, -R and n 4-28 
4.6.5 Adding a File to the Message: -r and -d 4-29 
4.6.6 Enclosing Another Message: -m and ~ 4-30 
4.6.7 Saving the Message in a File: -w 4-30 
4.6.8 Leaving mail Temporarily: -! and -I 4-30 
4.6.9 Escaping to mail Command Mode: -: 4-31 
4.6.10 Placing a Tilde at the Beginning of a Line: -- 4-32 

4.7 Setting Up Your Environment: The .mailrc File 4-32 
4.7.1 The Subject Prompt: asksubject 4-32 
4.7.2 The CC Prompt: askcc 4-33 
4.7.3 Printing the Next Message: autoprint 4-33 
4.7.4 Listing Messages in Chronological Order 4-33 
4.7.5 Using the Period to Send a Message: dot 4-33 
4.7.6 Sending mail While in mail: execmail 4-34 
4.7.7 Including Yourself in a Group: metoo 4-34 
4.7.8 Saving Aborted Messages: save 4-34 
4.7.9 Printing the Version Header: quiet 4-34 
4.7.10 Choosing an Editor: The EDITOR String 4-34 
4.7.11 Choosing an Editor: The VISUAL String 4-34 
4.7.12 Choosing a Shell: The SHELL String 4-35 
4.7.13 Changing the Escape Character: The escape String 4-35 
4.7.14 Setting Page Size: The page String 4-35 
4.7.15 Saving Outgoing mail: The record String 4-35 
4.7.16 Keeping mail in the System mailbox: autombox 4-36 



4.7.17 Changing the top Value: The toplines String 4-36 
4.7.18 Sending mail Over Telephone Lines: ignore 4-36 

4.8 Using Advanced Features 4-36 
4.8.1 Command Line Options 4-36 
4.8.2 Using mail as a Reminder Service 4-38 
4.8.3 Handling Large Amounts of mail 4-38 
4.8.4 Maintenance and Administration 4-39 

4.9 Quick Reference 4-40 
4.9.1 Command Summary 4-40 
4.9.2 Compose Escape Summary 4-45 
4.9.3 Option Summary 4-47 





4.1 Introduction 

The XENIX mail system is a versatile communication facility that allows 
XENIX users to compose, send, receive, forward, and reply to mail. Users 
can also create distribution groups and send copies of messages to multi­
pIe users. These functions are integrated into XENIX so that all users can 
quickly and easily communicate with each other. 

This chapter is organized to satisfy the needs of both the beginning and 
advanced user. The first sections discuss basic concepts, tasks, and com­
mands. Later sections discuss advanced topics and provide quick refer­
ence to the mail program's many functions. The major sections in this 
chapter are: 

Demonstration 

Basic Concepts 

Using mail 

Commands 

Shows new users how to get started. 

Discusses the fundamental ideas and 
terminology used in mail. 

Shows how to perform common mailing 
procedures such as composing, sending, 
forwarding, and replying to mail. 

Discusses each mail command. 

Leaving Compose Mode Temporarily 
Discusses and gives examples of each 
command available when composing a 
message. These commands are called 
"compose escapes." 

Setting Up Your Environment 

Using Advanced Features 

Quick Reference 

Discusses th~ user's mail startup file and 
options that may be set to customize 
functions. 

Discusses advanced features such as 
using mail as a reminder service and 
handling a large volume of mail. 

Summarizes all commands, compose 
escapes, and options. 

4-1 



XENIX User's Guide 

4.2 Demonstration 

The mail command lets you perfonn two distinct functions: sending mail 
and disposing of mail. In this demonstration, we will show you how to 
send mail to yourself, read a message, delete it, and exit the mail pro­
gram. 

4.2.1 Composing and Sending a Message 

To begin, enter: 

mail self 

where self is your user name. Next, enter the following lines. Press 
RETURN at the end of each line. 

This is a message sent to myself. 
I compose a message by entering lines of text. 
Press Ctrl-d on a newline to end the message. 

As you enter the message you can use "compose escapes" to perfonn 
special functions. To get a list of the available compose escapes, enter: 

on a new line. To specify a subject, use the -s escape. For example, 
enter: 

-s Sample subject 

To specify a list of people to receive carbon copies use the -c escape. For 
example, enter: 

-c abel 

To view the message as it will appear when you send it, enter: 

4-2 



This will display the following: 

Message contains: 
To: self 
Subject: Sample subject 
Cc: abel 

This is a message sent to myself. 
I compose a message by entering lines of text. 
Press Ctrl-d on a newline to end the message. 

mail 

Finally, press Ctrl-d by itself on a line, to end the message and send it to 
those that you have mentioned in the To: and the Cc: fields. You will 
exit from the mail program and return to the XENIX shell. Once you have 
sent mail, there is no way to undo the act, so be careful. 

4.2.2 Reading mail 

Your message should have arrived in your system mailbox. To read it, 
enter: 

mail 

mail then displays a sign-on message and a list of message headers that 
look something like this: 

Mail version 3.0 August 30, 1985. Type? for help. 
1 message: 

1 self Fri Aug 31 12:26 7/188 "Sample subject" 

When there is more than one message in your mailbox, the most recent 
message is displayed at the top of the list. The message at the top of the 
list has the highest number. The messages are numbered in ascending 
order from least recent to most recent. The message header includes who 
sent the message, when it was sent, the number of lines and characters, 

4-3 



XENIX User's Guide 

and the subject of the message. The underscore prompt prompts you to 
enter a mail command. Now enter: 

? 

to get help on all the available mail commands. Next, enter: 

p 

to see the message that you sent to yourself. mail displays the following: 

From self Fri Aug 20 12:26:52 1985 
To: self 
Subject: Sample subject 

This is a message sent to myself. 
I compose a message by entering lines of text. 
Press Ctrl-d on a newline to end the message. 

The message you sent to yourself now contains information about the 
sender of the message-a line telling who sent the message and when it 
was sent. The next line tells who the message was sent to. A subject and 
carbon copy (Cc:) field can be specified by the sender. If they are present, 
they too are displayed when you read the message. 

Note that you can configure your environment so that you are notified 
whenever new mail is sent to you. To do so, you would have to set the 
MAIL shell variable if you are using the Bourne shell or the mail shell 
variable if you are using the C-shell. For more information, see "The 
Shell" chapter of the XENIX User's Guide and csh(C) in the XENIX User's 
Reference. 

4.2.3 Leaving mail 

If this message has no real use, you can delete it by entering: 

d 

4-4 



mail 

To get out of mail, enter: 

q 

mail then displays the message 

o messages held in /usr/spool/mail/self 

and returns you to the XENIX shell. 

This ends the demonstration. For more detailed information, see the dis­
cussions in the following sections. 

4.3 Basic Concepts 

It is much easier to use mail if you understand the basic concepts that 
underlie it. The concepts discussed in this section are: 

• Mailboxes 

• Messages 

• Modes 

• Command syntax 

4.3.1 Mailboxes 

It is useful to think of the mail system as modeled after a typical postal 
system. What is normally called a post office is called the "system mail­
box" in this chapter. The system mailbox contains a file for each user in 
the directory /usrlspoollmail. Your own personal or "user mailbox" is 
the file named mbox in your home directory. mail sent to you is put in 
your system mailbox; you may choose to save mail in your user mailbox 
after you have read it. Note that the user mailbox differs from a real mail­
box in several respects: 

4-5 



XENIX User's Guide 

1. You decide whether mail is to be placed in the user mailbox; it is 
not automatically placed there. 

2. The user mailbox is not the place where mail is initially routed­
that place is the system mailbox in the directory lusrlspoollmail. 

3. mail is not picked up/rom your user mailbox. 

4.3.2 Messages 

In mail, the message is the basic unit of exchange between users. Mes­
sages consist of two parts: a heading and a body. The heading contains 
the following fields: 

To: 

Subject: 

Cc: 

Bcc: 

This field is mandatory. It contains one or more valid 
user names to which you may send mail. 

This optional field contains text describing the message. 

The carbon copy field contains one or more valid names 
of those who are to receive copies of a message. Mes­
sage recipients see these names in the received message. 
This field can be empty. 

The blind carbon copy field contains the one or more 
valid names of people who are to receive copies of a 
message. Recipients do not see these names in the 
received messages. This field can be empty. 

Return-receipt-to: 
The return receipt to: field contains the valid name or 
names of those who are to receive an automatic ack­
now ledgement of the message. This field can be empty. 

The body of a message is text exclusive of the heading. The body can be 
empty. 

4.3.3 Modes 

Often, the biggest hurdle to using mail is understanding what modes of 
operation are available. This section discusses each mode. 

4-6 



mail 

When you invoke mail you are using the shell. If you want to mail a letter 
without entering mail command mode, you can do so by entering: 

mail john < letter 

Here, the file letter is sent to the user john. 

Note 

Be very careful when mailing a file with the input redirection sym­
bol «). If you accidentally enter the output redirection symbol (», 
you will overwrite the file, destroying its contents. 

You can enter a message from your shell by entering: 

mail john 

Next, enter the text of your message as follows: 

This is the text of the message. 

Press RETURN to start a new line, then Ctrl-d to send the message. 

Messages such as the one above are created in compose mode. When 
entering text in compose mode, there are several special keys associated 
with line editing functions: these are the same special characters that are 
available to you when executing normal XENIX commands. For example, 
you can kill the line you are editing by entering Ctrl-u, normally the kill 
character. To backspace, press the BACKSPACE Key or Ctrl-h. 

From compose mode, you can issue commands called compose escapes. 
These are also called tilde escapes because the command letters are pre­
ceded by a tilde C). When you execute these commands you are tem­
porarily leaving or escaping from compose mode; hence the name. Note 
that once you have pressed RETURN to end a line, you cannot change 
that line from within compose mode. You must enter edit mode in order 
to change that line. 

The most common way of using mail is just to enter: 

mail 

If you have mail waiting.this command will automatically place you in 
command mode. In this mode, you are prompted by an underscore for 

4-7 



XENIX User's Guide 

commands that permit you to manage your mail. If you have no mail 
waiting, you see the message no messages and are returned to the XENIX 
prompt. 

You can enter edit mode from either compose mode or command mode. 
In edit mode, you edit the body of a message using the full capabilities of 
an editor. To enter edit mode from command mode, use either the e or 
edit command to enter ed, or the v or visual command to enter vi. (Vi 
may not be available on your system.) To enter edit mode from compose 
mode, use the compose escapes -e and -v, respectively. 

4.3.4 Message-Lists 

Many mail commands take a list of messages as an argument. A 
message-list is a list of message numbers, ranges, and names, separated 
by spaces or tabs. Message numbers may be either decimal numbers, 
which directly specify messages, or one of the special characters A, ., or 
$, which specify the first, current, or last undeleted message, respec­
tively. Here, relevant means not deleted. 

A range of messages is two message numbers separated by a dash. To 
display the first four messages on the screen, enter: 

P 1-4 

To display all the messages from the current message to the last message, 
enter: 

p .-$ 

A name is a user name. Messages can be displayed by specifying the 
name of the sender. For example, to display each message sent to you by 
john, enter: 

pjohn 

As a shorthand notation, you can specify star (*) to get all undeleted mes­
sages. For example, to display all messages except those that have been 
deleted, enter: 

p* 

4-8 



mail 

To delete all messages, enter: 

d* 

To restore all messages, enter: 

u* 

All three of these commands are described later in detail in the section 
"Commands.' , 

4.3.5 Headers 

When you enter mail,. a list of message headers is displayed. A header is 
a single line of text containing descriptive information about a message. 
(Note that we use the word heading to describe the first part of a message, 
and header to describe mail's one-line description of a message.) The 
infonnation includes: 

• The number of the message 

• The sender 

• The date sent 

• The number of characters and lines 

• The subject (if the message contains a Subject: field) 

Message headel"; are displayed in windows with the headers command. 
A header window contains no more than 18 headers. If there are fewer 
than 18 messages in the mailbox, all are displayed in one header window. 
If there are more than 18 messages, then the list is divided into an 
appropriate number of windows. You can move forward one window at a 
time with the command: 

headers + 

and move backward one window at a time with the command: 

headers -

commands. 

4-9 



XENIX User's Guide 

4.3.6 Command Syntax 

Each mail command has its own syntax. Some take no arguments, some 
take only one, and others take several arguments. The more flexible com­
mands, such as print, accept combinations of message-lists and user 
names. For these commands, mail first gathers all message numbers and 
ranges, then finds all messages from any specified user names. The full 
message-list is the intersection of these two sets of messages. Thus, the 
message-list "4-15 miller" matches all messages between 4 and 15 that 
are from miller. 

Each mail command is entered on a line by itself, and any arguments fol­
low the command word. The command need not be entered in its 
entirety-the first command that matches the entered prefix is used. For 
example, you can enter "p" instead of "print" for the print command 
and "h" instead of "headers" for the headers command. 

After the command itself is entered, one or more spaces should be entered 
to separate the command from its arguments. If a mail command does 
not take arguments, any arguments you give are ignored and no error 
occurs. For commands that take message-lists as arguments, if no 
message-list is given, the last message printed is used. If it does not 
satisfy the requirements of the command, the search proceeds forward. If 
there are no messages ahead of the current message, the search proceeds 
backwards, and if there are no valid messages at all, mail displays: r No applicable messages 

4.4 Using mail 

This section describes how to perform some basic tasks when using mail. 
More detailed discussions of each of these commands are presented in 
later sections. 

4-10 



mail 

4.4.1 Entering and Exiting mail 

To begin a session with mail, enter: 

mail 

The headers for each received message are then displayed one screenful 
at a time. To display the next screenful of headers (if any), enter: 

h+ 

To end the mail session, use the quit (q) command. All messages remain 
in the system mailbox unless they have been deleted with the delete ( d ) 
command, saved with the save or write command, or held in your user 
mailbox with the mbox command. Deleted messages are discarded. The 
-f command line option causes mail to read in the contents of mbox. 
Optionally, a filename may be given as an argument to -f, so that the 
specified file is read instead. When you quit, mail writes all messages 
back to this file. 

If you send mail over a noisy phone line, you will notice that many of the 
bad characters turn out to be RUB OUT or DEL character. These charac­
ters cause mail to abort messages. To deal with this annoyance, you can 
invoke mail with the -i option which causes these bad characters to be 
ignored. 

4.4.2 Sending mail 

To send a message, invoke mail with the names of the people and groups 
you want to receive the message. Next, enter your message. When you 
are finished, press Ctrl-d at the beginning of a line. The message is 
automatically sent to the specified people. While entering the text of 
your message, you can escape to an editor or perform other useful func­
tions with compose escapes. The section "Composing mail," describes 
some features of mail available to help you when composing messages. 

If you have a file that contains a written message, you can send it to sam, 
bob, and john by entering: 

mail sam bob john < letter 

where letter is the name of the file you are sending. 

4-11 



XENIX User's Guide 

Note 

Be very careful when mailing a file with the input redirection sym­
bol «). If you accidentally enter the output redirection symbol (», 
you will overwrite the file, destroying its contents. 

If mail cannot be delivered to a specified address, you will either be 
notified immediately, in which case a copy of the undeliverable message 
is appended to the file dead. letter, or you will be notified via return mail, 
in which case a copy is included in the return mail message. 

4.4.3 Sending Mail to Remote Sites 

You can send mail to users on remote computer sites that are networked 
to your own site. The network can either be a Micnet network or a UUCP 
network. Ask your system administrator if you are not sure which net­
work the site you want to mail to uses. 

If the site you want to send mail to is a Micnet site, you would enter the 
following command to mail to a user on that site: 

mail site-name:user 

Note that the site name is followed by a colon (:). 

For example, to send mail to stevem on the Micnet computer named obie, 
you would enter the following command: 

mail obie:stevem 

After entering this command, you would continue with mail just as if you 
were sending mail to a local user. 

You can also send mail to users on remote UUCP sites. To find out which 
UUCP sites your computer communicates with, enter the following com­
mand at the XENIX prompt: 

uuname 

A list of site names is displayed. 

4-12 



mail 

To send mail to a user on a UUCP site, enter the following command: 

mail site-name!user 

The site name must be followed by an exclamation mark (!). You can 
have several site names on a command line. Be sure to follow each one 
with an exclamation mark. 

For example, to send mail to user markt on site bowie, you would enter 
the following command: 

mail bowie!markt 

You would then proceed to use mail just as if you were mailing a local 
user. 

As another example, suppose your site talked to UUCP site bowie and 
that bowie talked to UUCP site bradley. You could send mail to user 
cindy on bradley by entering the following command: 

mail bowie!bradley!cindy 

Note 

If you are using the C-shell, you must "escape" exclamation marks 
with the backslash (\). A C-shell user would enter the above com­
mand as follows: 

mail bowie\!bradley\!cindy 

For more information on communicating with remote sites, see the 
"Communicating with Other Sites" chapter in this guide. 

4.4.4 Reading mail 

To read messages sent to you, enter: 

mail 

mail then checks your mail out of the system mailbox and prints out a 
one-line header of each message, one screenful at a time. Enter "h+" to 

4-13 



XENIX User's Guide 

view the next screenful. The most recent message is initially the first 
message (numbered highest, because messages are numbered chronologi­
cally) and may be printed using the print command. You can move for­
ward one message by pressing RETURN or entering "+". To move for­
ward n messages use "+n". You can move backwards one message with 
the "-" command or move backwards n messages and print with "-n". 
You can also move to any arbitrary message and print it by entering its 
number. 

If new messages arrive while you are in mail, the following message 
appears: 

New mail has arrived--type 'restart' to read. 

Enter: 

restart 

and the headers of the new messages are displayed. 

4.4.5 Disposing of mail 

After examining a message you can delete it with the delete ( d ) com­
mand, reply to it with the reply ( r ) command, forward it with the for­
ward ( f ) command, or skip to the next message by pressing RETURN. 
Deletion causes the mail program to forget about the message. This is not 
irreversible; the message can be undeleted with the undelete(u) com­
mand by entering: 

u number 

4.4.6 Composing mail 

To compose mail, you must enter compose mode. Do this from XENIX 
command level by entering: 

mail john 

4-14 



mail 

where john is the name of a user to whom you want to send mail. From 
mail command mode, you can enter compose mode with the mail, reply, 
or Reply commands. Once in compose mode, the text that you enter is 
appended one line at a time to the body of the message you are sending. 
Normal line editing functions are available when entering text, including 
Ctrl-u to kill a line and Backspace to back up one character. Note that 
when you enter two interrupts in a row (i.e., pressing INTERRUPT twice), 
your composition is aborted. 

While you are composing a message, mail treats lines beginning with the 
tilde character (-) in a special way. This character introduces' commands 
called compose escapes. For example, entering: 

by itself on a line places a copy of the most recently printed message 
inside the message you are composing. The copy is shifted right one 
tabstop. 

Other escapes set up heading fields, add and delete recipients to the mes­
sage, allow you to escape to an editor, let you revise the message body, or 
run XENIX commands. To get a list of the available compose escapes 
when in compose mode, enter: 

See also "Leaving Compose Mode Temporarily," later in this chapter. 

4.4.7 Forwarding mail 

To forward a message, use the forward ( f ) command. For example, 
enter: 

f john 

to forward the current message to john. John will receive a copy of the 
current message, along with a new header indicating that it came from 
you. The copy is shifted right one tabstop. 

The Forward ( F ) command works just like its lowercase counterpart, 
except that the forwarded message is not shifted right one tabs top. 

4-15 



XENIX User's Guide 

4.4.8 Replying to mail 

You can use the reply command to set up a response to a message, 
automatically addressing a reply to the person who sent the original mes­
sage. You can enter text and send the message by pressing Ctrl-d on a 
line by itself. The Reply command works just like its lowercase counter­
part, except that the message is sent to others named in the original 
message's To: and Cc: fields. 

4.4.9 Specifying Messages 

Commands such as print and delete can be given a message-list argu­
ment to apply to several messages at once. Thus "delete 2 3" deletes 
messages 2 and 3, while "delete 1-5" deletes messages 1 through 5. A 
star (*) addresses all messages, and a dollar sign ($) addresses the last 
(highest numbered) message. The top (t ) command displays the first five 
lines of a message; hence, you can enter: 

top * 

to display the first five lines of every message. Message-lists can contain 
combinations of lists, ranges, and names. For example, the following 
command displays all messages from tom or bob and numbered 2, 4, 10, 
11, or 12: 

p tom bob 2 4 10-12 

4.4.10 Creating Mailing Lists 

You can create personal mailing lists so that, for example, you can send 
mail to cohorts and have it go to a group of people. Such lists are defined 
by placing an alias line like: 

alias cohorts bill bob barry 

in the file .maitrc in your home directory. The current list of such aliases 
can be displayed with the alias (a) mail command. Personal aliases are 
expanded in mail sent to others so that they will be able to Reply to each 
individual recipient. For example, the To: field in a message sent to 
cohorts will read: 

To: bill bob barry 

4-16 



mail 

and not: 

To: cohorts 

Nonnally, system-wide aliases are available to all users. These are 
installed by whoever is in charge of your system. For more infonnation, 
see the section "Using Advanced Features," later in this chapter. 

4.4.11 Setting Options 

mail has several options that you can set from mail command mode or in 
the file .maitre in your home directory. For example, "set askcc" enables 
the askcc switch and causes prompting for additions to the Ce: field 
when you finish composing a message. These and other options are dis­
cussed in the section "Setting Up Your Environment: The .mailrc File." 

4.5 Commands 

This section describes each of the commands available to you in mail 
command mode. The examples in this section assume you have invoked 
mail and that you have several messages you want to dispose of. Note 
that in general, mail commands can be invoked with either the name of 
the command or a one- or two-character mnemonic abbreviation. In the 
text of the command descriptions below, this mnemonic abbreviation is 
enclosed in parentheses after the name of the command. All commands 
are printed in boldface, except in the examples. 

4.5.1 Getting Help: help and? 

The help ( ? ) command displays a brief summary of all mail commands, 
so if you ever get stuck when you are in mail command mode, enter: 

? 

or: 

help 

4-17 



XENIX User's Guide 

4.5.2 Reading mail: p, +, -, and restart 

To look at a specific message, use the print ( p ) command. For example, 
pretend you have a header-list that looks like this: 

3 john Wed Sep 21 09:21 26/782 "Notice" 
2 sam Tue Sep 20 22:55 6/83 "Meeting" 
1 tom Man Sep 19 01:23 6/84 "Invite" 

Reading from the left, each header contains the message number, who 
sent it, the day, date, and time it was sent, the number of lines and charac­
ters in the message, and its subject. 

To examine the second message, enter: 

p2 

This might cause mail to respond with: 

Message 2: 
From sam Tue June 20 22:55 1985 
Subject: Meeting 

Meeting everyone, please do not forget! 

To look at message 3, enter: 

or to look at message 1, enter: 

+ 

The commands + and - execute relative to the last message referred to, 
which in our example was 2. For large numbers of messages, you can skip 

4-18 



mail 

forward and backward by the number of messages specified as an argu­
ment to + and -. For example, entering: 

+3 

skips forward three messages. If you enter: 

p* 

then all messages are displayed, since the star (*) matches all messages. 

Pressing RETURN displays the next message in the header-list. You can 
always go to a message and print it by giving its message number or one 
of the special characters, caret C), dot (.), or dollar sign ($). In the exam­
ple where message 2 is the current message, to display the current mes­
sage, enter: 

To display message 1, enter: 

To display message 3, enter: 

$ 

When new mail arrives while you are in mail, the message "New mail 
has arrived-type 'restart' to read." If you wish to read the new mes­
sages, enter: 

restart 

The headers of the new messages appear. 

4.5.3 Finding Out the Number of the Current Message: = 

The number ( = ) command displays the message number of the current 
message. It takes no arguments. 

4-19 



XENIX User's Guide 

4.5.4 Displaying the First Five Lines: t 

The top ( t) command takes a message-list and displays the first five lines 
of each addressed message. For example: 

top 2-12 

displays the first five lines of each of the messages 2 through 12. Note 
that the number of lines displayed by top can be set with the toplines 
option. 

4.5.5 Displaying Headers: h 

The headers ( h ) command displays header windows or lists of headers. 
A header window contains no more than 18 headers. With no argument, 
the headers command displays a header window in which the current 
message header is displayed at the center of the window. 

To examine the next set of 18 headers, enter: 

h+ 

To examine the previous set, enter: 

h-

Both plus and minus take an optional numeric argument that indicates the 
number of header windows to move forward or backward before printing. 
If a message-list is given, then the headers command displays the header 
line for each message in the list, disregarding all windowing. For exam­
ple: 

h joe 

displays all the message headers from joe. The following are some 
characteristics of the header-list: 

• Deleted messages do not appear in the listing. 

• Messages saved with the save command are flagged with a star (*). 

• Messages to be saved in your user mailbox are flagged with an 
"M". 

• If the autombox option is set, messages held with the hold com­
mand are flagged with an "H". 

4-20 



mail 

4.5.6 Deleting Messages: d and dp 

Unless you indicate otherwise, each message you receive is automatically 
saved in the system mailbox when you quit mail. Often, however, you do 
not want to save messages you have received. To delete messages, use 
the delete ( d ) command. For example: 

delete 1 

prevents mail from retaining message 1 in the system mailbox. The mes­
sage will disappear altogether, along with its number. 

The dp command deletes the current message and displays the next mes­
sage. It is useful for quickly reading and disposing of mail. Using dp is 
the same as using the d command with the autoprint option set. See also 
the undelete command, below. 

4.5.7 Undeleting Messages: u 

The undelete ( u ) command causes a message that has been previously 
deleted with d or dp to reappear as if it had never been deleted. For 
example, to undelete message 3, enter: 

u3 

You cannot undelete messages from previous mail sessions; they are per­
manently deleted. 

4.5.8 Leaving mail: q and x 

When you have read all your messages, you can leave mail with the quit 
( q ) command. All messages are held in your system mailbox, except the 
following: 

• Deleted messages, which are discarded irretrievably. 

• Messages marked with the mbox command, which are saved in 
mbox in your home directory (that is, your user mailbox). 

• Messages saved with the save and write commands are deleted 
from the system mailbox. Forwarded messages are not deleted. 

Note that if the autombox option is set, messages that you have read are 
automatically saved in your user mailbox. If you wish to leave mail 
quickly without altering either your system or user mailbox, you can use 

4-21 



XENIX User's Guide 

the exit ( x ) command. This returns you to the shell without changing 
anything: no messages are deleted or saved. Files that you invoke with 
the mail -f switch are unaffected as well. 

4.5.9 Saving Your mail: s 

The save ( s ) command lets you save messages to files other than mbox. 
By using save, you can organize your mail by putting messages in 
appropriate files. The save command writes out each message to the file 
given as the last argument on the command line. For example, the fol­
lowing command appends messages 1-5 to the file letters: 

s 1-5 letters 

The file letters is created if it does not already exist. Saved messages are 
not automatically retained in the system mailbox when you quit, nor are 
they selected by the print command described above, unless explicitly 
requested. Each saved message is marked with a star (*). 

Save writes out the entire message, including the To:, Subject:, and Cc: 
fields. In comparison, the write command, discussed below, writes out 
only the bodies of the specified messages. 

4.5.10 Saving Your mail: w 

The write ( w ) command writes out the body of each message to the file 
given as the last argument on the command line. Each written message is 
marked with a star (*). The syntax is similar to that of the save command. 
For example, 

w 3-17 john elliot book 

writes out the bodies of all messages' from john and elliot in the number 
range 3-17. They are concatenated to the end of the file named book. 

4.5.11 Saving Your mail: mb 

The mbox ( mb ) command marks each message specified in a message­
list, so that all are saved in the user mailbox when a quit command is exe­
cuted. Message headers are marked with an "M" to show that they are to 
be saved in mbox. 

4-22 



mail 

4.5.12 Saving Your mail: ho 

The hold ( ho ) command takes a message-list and marks each message so 
that it is saved in your system mailbox instead of deleted or saved in 
mbox when you quit. Saving of files in the system mailbox happens by 
default, so use hold only when you have also set the autombox option. 

4.5.13 Printing Your mail on the Lineprinter: I 

The Ipr ( I ) command paginates and prints out messages to the line­
printer. It takes a message-list as its argument, then paginates and prints 
out each message. For example: 

I doug 

prints out each message from the user doug on the lineprinter. 

4.5.14 Sending mail: m 

To send mail to a user, use the mail (m)command.This sends mail in 
the manner described for the reply command, except that you supply a 
list of recipients either as an argument or by entering them in the To: 
field. All compose escapes work in mail. Note that the mail command is 
in most ways identical to entering mail users at the XENIX command 
level. 

4.5.15 Replying to mail: rand R 

Often, you want to deal with a message by responding to its author right 
away. The reply ( r ) command is useful for this purpose: it takes a 
message-list and sends mail to the author of each message. The original 
message's subject field is copied as the reply's subject. Each message is 
created in compose mode; thus all compose escapes work in reply, and 
messages are terminated by pressing Ctrl-d. 

The Reply ( R ) command works just like its lowercase counterpart, 
except that copies of the reply are also sent to everyone shown in the ori­
ginal message's To: and Cc: fields. 

4-23 



XENIX User's Guide 

4.5.16 Forwarding mail: f and F 

To forward a copy of a message, use the forward ( f ) command. This 
causes a copy of the current message to be sent to the specified users. 
The message is marked as saved, and then deleted from the system mail­
box when you exit mail. For example, to forward the current message to 
someone whose login name is john, enter: 

f john 

John will receive the forwarded message, along with a heading showing 
that you are the one who forwarded it. The forwarded message is 
indented one tab stop inside the new message. An optional message 
number can also be given. For example: 

f 2 john bill 

forwards message 2 to john and bill. 

The Forward (F) command is identical to the lowercase forward com­
mand, except that the forwarded message is not indented. 

4.5.17 Creating mailing Lists: a 

The alias ( a ) command links a group of names with the single name 
given by the first argument, thus creating a mailing list. For example, you 
could enter: 

alias beatles john paul george ringo 

so that whenever you used the name beatles in a destination address (as in 
"mail beatles' '), it would be expanded so that you are really referring to 
the four names aliased to beatles. With no arguments, alias displays all 
currently-defined aliases. With one argument, it prints out the users 
defined by the given alias. 

You will probably want to define aliases in the startup file, . maitre , so that 
you do not have to redefine them each time you invoke mail. See the sec­
tion "Setting Up Your Environment: The .mailrc File," for more informa­
tion. 

4-24 



mail 

4.5.18 Setting and Unsetting Options: se and uns 

mail switch and string options can be set with the mail commands set and· 
unset. A switch option is either on or off (set or unset). String options are 
strings of characters that are assigned values with the syntax 
option=string. Multiple options may be specified on a line. It is most 
useful to place set and unset commands in the file .mailrc in your home 
directory, where they become your own personal default options when 
you invoke mail. For example, you might have a set command that 
looked like this: 

set dot metoo toplines=lO SHELL=/usr/bin/sh 

The options dot and metoo are switch options; toplines and SHELL are 
string options. 

The command 

set? 

displays a list of the available options. See the section "Setting Up Your 
Environment," for descriptions of these options. 

4.5.19 Editing a Message: e and v 

Invoke the edit command to edit individual messages while using the text 
editor. The edit command takes a message list and processes each mes­
sage in tum by writing it to a temporary file. The editor, ed, is then 
automatically invoked so that you can edit the temporary file. When you 
finish editing the message, write the message out, then quit the editor. 
mail reads the message back into the message buffer and removes the 
temporary file. 

It is often useful to be able to invoke either a line or visual editor, depend­
ing on the type of terminal you are using. To invoke vi, you can use the 
visual ( v ) command. The operation of the visual command is otherwise 
identical to that of the edit command. 

4.5.20 Executing Shell Commands: sh and! 

To execute a shell command without leaving mail, precede the command 
with an exclamation point. For example: 

!date 

4-25 



XENIX User's Guide 

displays the current date without leaving mail. To enter a new shell, 
enter: 

sh 

To exit from this new shell and return to mail command mode, press 
Ctrl-d. 

4.5.21 Finding the Number of Characters in a Message: si 

The size ( si ) command displays the number of characters in each mes­
sage in a message-list. For example, the command: "si 1-4" might 
display: 

r 4: 234 
3: 1000 
2: 23 
1: 456 

4.5.22 Changing the Working Directory: cd 

The cd command changes the working directory to the name of the direc­
tory you give it as an argument. If no argument is given, the directory is 
changed to your home directory. This command works just like the nor­
mal XENIX cd command. (Note that exiting mail returns you to the 
directory from which you entered mail; thus the mail cd command works 
only within mail.) You may want to place a cd command in your .mailrc 
file so that you always begin executing mail from within the same direc­
tory. 

4.5.23 Reading Commands From a File: so 

The source ( so ) command reads in mail commands from named file. 
Normally, these commands are alias, set, and unset commands. 

4-26 



mail 

4.6 Leaving Compose Mode Temporarily 

While composing a message to be sent to others, it is often useful to print 
a message, invoke the text editor on a partial message, execute a shell 
command, or perform some other function. mail provides these capabili­
ties through compose escapes (sometimes called tilde escapes) which 
consist of a tilde C) at the beginning of a line, followed by a single char­
acter that specifies the function to be performed. These escapes are avail­
able only when you are composing a new message. They have no meaning 
when you are in mail command mode. The available compose escapes 
are described below. 

4.6.1 Getting Help: -? 

The help escape is the first compose escape you should know because it 
tells you about all the others. For example, if you enter: 

a brief summary of the available compose escapes is displayed on your 
screen. Note that 11 prompts for heading fields and and does not give 
help. 

4.6.2 Printing the Message: -p 

To print the current text of a message you are composing, enter: 

This prints a line of dashes and the heading and body of the message so 
far. 

4.6.3 Editing the Message: -e and-v 

If you are dissatisfied with a message as it stands, you can edit the mes­
sage by invoking the editor, ed, with the editor escape, -e. This causes 
the message to be copied into a temporary file so that you can edit it. 
Similarly, the -v escape causes the message to be copied into a temporary 

4-27 



XENIX User's Guide 

file so that you can edit it with the vi editor. After modifying the message 
to your satisfaction, write it out and quit the editor. mail responds: r (continue) 

after which you may continue composing your message. 

To add additional names to the list of message recipients, enter the 
escape: 

-t name 1 name2 ... 

You can name as many additional recipients as you wish. Note that users 
originally on the recipient list will still receive the message: you cannot 
remove anyone from the recipient list with -t. To remove a recipient, use 
the -h command, which is discussed later in this section. 

You can replace or add a subject field by using the -s escape: 

-s line-oj-text 

This replaces any previous subject with line-oj-text. The subject, if 
given, appears near the top of the message, prefixed with the heading Sub­
ject:. You can see what the message looks like by using -p, which 
displays all heading fields along with the body of the text. 

You may occasionally prefer to list certain people as recipients of carbon 
copies of a message rather than direct recipients. The escape: 

-c name 1 name2 ... 

adds the named people to the Cc: list. The escape: 

-cc name 1 name2 ... 

performs an identical function. Similarly, the escape: 

o namel name2 ... 

4-28 



mail 

adds the named people to the Bee: (Blind carbon copy) list. The people 
on this list receive a copy of the message, but are not mentioned any­
where in the message you send. Remember that you can always execute a 
-p escape to see what the message looks like. 

The escape: 

adds or changes the person or persons named in the return-receipt-to: 
field. 

The recipients of the message are given in the To: field; the subject is 
given in the Subject: field, carbon copy recipients are given in the Ce: 
field and the return receipt recipient in the Return-receipt-to: field. If you 
wish to edit these in ways impossible with the -t, -s, -c, and -R escapes, 
you can use: 

where h stands for "heading." The escape -h displays To: followed by 
the current list of recipients and leaves the cursor at the end of the line. If 
you enter ordinary characters, they are appended to the end of the current 
list of recipients. You can also use the normal XENIX command line edit­
ing characters to edit these fields, so you can erase existing heading text 
by backspacing over it. 

When you press RETURN, mail advances to the Subject: field, where the 
same rules apply. Another RETURN brings you to the Ce: field, another 
brings you to the Bee: field, and yet another to the Return-receipt-to: 
field. Each of these fields can be edited in the same way. Finally, another 
RETURN leaves you appending text to the end of your message body. As 
always, you can use -p to print the current text of the heading fields along 
with the body of the message. 

4.6.5 Adding a File to the Message: -r and -d 

It is often useful to be able to include the contents of some file in your 
message. The escape: 

-r filename 

is provided for this purpose, and causes the named file to be appended to 
your current message. mail complains if the file does not exist or cannot 
be read. If the read is successful, mail displays the number of lines and 
characters appended to your message. 

4-29 



XENIX User's Guide 

As a special case of -r, the escape: 

reads in the file dead. letter in your home directory. This is often useful 
because mail copies the text of your message buffer to dead. letter when­
ever you abort the creation of a message. You can abort the message by 
entering two consecutive interrupts or by entering a -q escape. 

4.6.6 Enclosing Another Message: -m and-M 

If you are sending mail from within mail's command mode, you can insert 
a message, that was previously sent to you, into the message that you are 
currently composing. For example, you might enter: 

This reads message 4 into the message you are composing, shifted right 
one tab stop. The escape: 

performs the same function, but with no right shift. You can name any 
nondeleted message or list of messages. 

4.6.7 Saving the Message in a File: -w 

To save the current text of a message body in a file, use: 

-w filename 

mail writes out the message body to the specified file, then displays the 
number of lines and characters written to the file. The -w escape does not 
write the message heading to the file. 

4.6.8 Leaving mail Temporarily: -! and -I 

To temporarily escape to the shell, use the escape: 

-!command 

4-30 



mail 

This executes command and returns you to mail compose mode without 
altering your message. If you wish to filter the body of your message 
through a shell command, use: 

-I command 

This pipes your message through the command and uses the output as the 
new text of your message. If the command produces no output, mail 
assumes that something is wrong. It retains the old version of your mes­
sage, and displays: r (continue) 

4.6.9 Escaping to mail Command Mode: -: 

To temporarily escape to mail command mode, use either of the escapes: 

- :mail-command 

-_mail-command 

You can then execute any mail command that you want. Note that this 
escape will not work in most cases if you enter compose mode from the 
XENIX shell. It depends on the command used (set and unset will work), 
but most commands that involve message lists are not allowed. You will 
receive the message: 

May not execute cmd while composing 

4-31 



XENIX User's Guide 

4.5.10 Placing a Tilde at the Beginning of a Line: ~~ 

If you wish to send a message that contains a line beginning with a tilde, 
you must enter it twice. For example, entering: 

--This line begins with a tilde. 

appends: 

-This line begins with a tilde. 

to your message. The escape character can be changed to a different char­
acter with the escape option. (For information on how to set options, see 
the section "Setting Up Your Environment: The .mailrc File.") If the 
escape character is not a tilde, then this discussion applies to that charac­
ter and not the tilde. 

4.6 Setting Up Your Environment: The .mailrc File 

Whenever mail is invoked, it first reads the file lusrl liblmaillmailre then 
the file .maitre in the user's home directory. System-wide aliases are 
defined in lusrlliblmaillmailre. Personal aliases and set options are 
defined in . maitre. The following is a sample .maitre file: 

# number sign introduces comments 

# personal aliases office and cohorts are defined below 

alias office bill steve karen 
alias cohorts john mary bob beth mike 

# set dot lets messages be terminated by period on new line 

# set askcc says to prompt for Cc: list after composing message 

set dot askcc 

# cd changes directory to different current directory 

cd 

4-32 



mail 

4.6.1 The Subject Prompt: asksubject 

The asksubject switch causes prompting for the subject of each message 
before you enter compose mode. If you respond to the prompt with a 
RETURN, then no subject field is sent. 

4.6.2 The CC Prompt: askcc 

The askcc switch causes prompting for additional carbon copy recipients 
when you finish composing a message. Responding with a RETURN sig­
nals your satisfaction with the current list. Pressing INTERRUPT 
displays: r interrupt 

(continue) 

so that you can return to editing your message. 

4.6.3 Printing the Next Message: autoprint 

The autoprint switch causes the delete command to behave like dp. 
After deleting a message, the next message in the list is automatically 
printed. Printing also occurs automatically after execution of an undelete 
command. 

4.6.4 Listing Messages in Chronological Order 

The chron switch causes messages to be listed in chronological order. By 
default, messages are listed with the most recent first. Set chron when 
you want to read a series of messages in the order they were received. 

The mchron switch, like chron, displays messages in chronological order, 
but lists them in the opposite order, that is, highest-numbered, or most 
recent, first. This is useful if you keep a large number of messages in your 
mailbox and you wish to list the headers of the most recently received 
mail first but read the messages themselves in chronological order. 

4-33 



XENIX User's Guide 

4.6.5 Using the Period to Send a Message: dot 

The dot switch lets you use a period C.) as an end-of-transmission charac­
ter, as well as Ctrl-d. This option is available for those who are used to 
this convention when editing with the editor, ed. 

4.6.6 Sending mail While in mail: execmail 

It is often desirable to reply to a piece of mail, or send mail while reading 
your mail file. This process is speeded up by the use of the execmail 
option. It causes the underbar prompt to return before mail is finished 
being sent. This frees the user to continue while mail performs mailing 
functions in the background. 

4.6.7 Including Yourself in a Group: metoo 

Usually, when a group is expanded that contains the name of the sender, 
the sender is removed from the expansion. Setting the metoo option 
causes the sender to be included in the group. 

4.6.8 Saving Aborted Messages: save 

The nosave switch prevents aborted messages from being appended to the 
file dead. letter in your home directory; messages are saved by default. 
You can abort messages when you are in compose mode by entering two 
interrupts or a -q compose escape. 

4.6.9 Printing the Version Header: quiet 

The quiet switch suppresses the printing of the version header when mail 
is first invoked. 

4.6.10 Choosing an Editor: The EDITOR String 

The EDITOR string contains the pathname of the text editor to use in the 
edit command and -e escape. If not defined, then the default editor is 
used. For example: 

set EDITOR=/bin/ed 

4-34 



mail 

4.6.11 Choosing an Editor: The VISUAL String 

The VISUAL string contains the pathname of the text editor used in the 
visual command and -v escape. For example: 

set VISUAL=/bin/vi 

By default, vi is the editor used. 

4.6.12 Choosing a Shell: The SHELL String 

The SHELL string contains the name of the shell to use in the ! command 
and the -! escape. A default shell is used if this option is not defined. For 
example: 

set SHELL=/bin/sh 

4.6.13 Changing the Escape Character: The escape String 

The escape string defines the character to use in place of the tilde C) to 
denote compose escapes. For example: 

set escape=* 

With this setting, the asterisk becomes the new compose escape charac­
ter. 

4.6.14 Setting Page Size: The page String 

The page string causes messages to be displayed in pages of size n lines. 
You are prompted with a question mark between pages. Pressing 
RETURN causes the next page of the current message to be displayed. By 
default this paging feature is turned off. 

4.6.15 Saving Outgoing mail: The record String 

The record string sets the pathname of the file used to record all outgoing 
mail. If not defined, then outgoing mail is not copied and saved. For 
example: 

set record=/usr/john/recordfile 

4-35 



XENlx User's Guide 

With this setting, all outgoing mail is automatically appended to the file 
/ usr/ john/ recordfile. 

4.6.16 Keeping mail in the System mailbox: autombox 

The autombox switch determines whether messages remain in the system 
mailbox when you exit mail. If you set autombox, the examined messages 
are automatically placed in the mbox file in your home directory (your 
user maiibox). They are removed from the system mailbox when you 
quit. 

4.6.17 Changing the top Value: The toplines String 

The toplines string sets the number of lines of a message to be displayed 
with the top command. By default, this value is five. For example: 

set toplines= 1 0 

With this setting, ten lines of each message are displayed when the top 
command is used. 

4.6.18 Sending mail Over Telephone Lines: ignore 

The ignore switch causes interrupt signals from your terminal to be 
ignored and echoed as at-signs (@). This switch is normally used only 
when communicating with mail over telephone lines. 

4.7 Using Advanced Features 

This section discusses advanced features of mail useful to those with 
some existing familiarity with the XENIX mail system. 

4.7.1 Command Line Options 

One very useful command line option to mail is the -s "subject" switch. 
You can specify a subject on the command line with this switch. For 
example, you could send a file named letter with the subject line, 
"Important Meeting at 12:00", by entering the following: 

mail -s "Important Meeting at 12:00" john bob mike <letter 

4-36 



mail 

To include other header fields in your message, you can use the following 
options: 

-b user Adds the blind carbon copy field to the message header. 

-c user Adds the carbon copy field to the message header. 

-r user Adds the return-receipt to: field to the message header. 

None of the above options may be specified more than once on a mail 
command line. If multiple arguments are required for an option, the 
entire argument set must be enclosed in quotes, as in: 

mail -r "meeting" -b singleuser -c "x y z" user user2 

mail also allows you to edit files of messages by using the -f switch on the 
command line. For example: 

mail -ffilename 

causes mail to edit filename and the command: 

mail -f 

causes mail to read mbox in your home directory. All the mail commands 
except hold are available to edit the messages. When you enter the quit 
command, mail writes the updated file back. 

If you send mail over a noisy phone line, you may notice that bad charac­
ters are transmitted. These are characters that abort messages: RUB OUT 
and DEL. You can invoke mail with the -i switch to ignore these bad 
characters. 

When you enter the mail program (as opposed to sending a message from 
command level), two command line options are available: 

-R Makes the mail session read-only, preventing alteration of 
the mail being read. 

-u user Reads in user's mail instead of your own. 

4-37 



XENIX User's Guide 

4.7.2 Using mail as a Reminder Service 

Besides sending and receiving mail, you can use mail as a reminder ser­
vice. Several XENIX commands have this idea built in to them. For 
example, the XENIX Ip command's -m switch causes mail to be sent to 
the user after files have been printed on the lineprinter. XENIX automati­
cally examines the file named calendar in each user's home directory and 
looks for lines containing either today or tomorrow's date. These lines are 
sent by mail as a reminder of important events. 

If you program in the shell command language, you can use mail to signal 
the completion of a job. For example, you might place the following two 
lines in a shell procedure: 

biglongjob 
echo "biglongjob done" I mail self 

You can also create a log file that you want to mail to yourself. For exam­
pIe, you might have a shell procedure that looks like this: 

dosomething >logfile 
mail self <log file 

For information about writing shell procedures, see "The Shell" chapter 
in this Guide. 

4.7.3 Handling Large Amounts of mail 

Eventually, you will face the problem of dealing with an accumulation of 
messages in your user mailbox. There are a number of strategies that you 
can employ to solve this problem concerning space in your mailbox file. 
Keep in mind the dictum: 

When in doubt, throw it out. 

This means that you should only save important mail in your user mail­
box. If your mailbox file becomes large, you must periodically examine 
its contents to decide whether messages are still relevant. To save space, 
consider summarizing very long messages. 

The previously mentioned measures are not always helpful enough in 
organizing the many messages that you are likely to receive. Another 
effective approach is to save mail in files organized by sender, by topic, or 
by a combination of the two. Create these files in a separate mail direc-

4-38 



mail 

tory; you can access these mailbox files with the mail -f.filename switch. 
However, be forewarned-this approach to organizing mail quickly eats 
up disk space. 

4.7.4 Maintenance and Administration 

The following is a list of the programs and files that make up the XENIX 
mail system: 

/usr/bin/mail 

/usr/lib/mail/mailrc 

/usr/spool/mail/* 

/usr/name/dead.letter 

/usr/name/mbox 

/usr/name/.mailrc 

/usr/lib/mail/mailhelp.cmd 

/usr/lib/mail/mailhelp.esc 

/usr/lib/mail/mailhelp.set 

/usr/lib/mail/ aliases 

/usr/lib/mail/ aliases .hash 

/usr/lib/mail/faliases 

/usr/lib/mail/maliases 

/usr/lib/mail/maliases.hash 

mail program 

mail system initialization file 

System mailbox files 

File where undeliverable mail 
is deposited 

User mailbox 

User mail initialization file 

mail command help file 

mail compose escape help file 

mail option help file 

System-wide aliases 

System-wide alias database 

Forwarding aliases 

Machine aliases 

Optional machine aliases data­
base 

A system-wide distribution list is kept in / usr/ lib/ mail/aliases. A system 
administrator is usually in charge of this list. These aliases are kept in a 
vastly different syntax from .mailrc, and are expanded when mail is sent. 
You will normally need special permission to change system-wide 
aliases. 

4-39 



XENIX User's Guide 

4.8 Quick Reference 

The following sections provide quick reference to the available com­
mands, compose escapes, and options. 

4.8.1 Command Summary 

Given below are the name and syntax for each command, the abbreviated 
form (in brackets), and a short description. Many commands have 
optional arguments; most can be executed without any arguments at all. 
In particular, commands that take a message-list argument will default to 
the current message if no message-list is given. In the following descrip­
tions, boldface denotes the name of a command, compose escape or 
option. Italics are used for arguments to commands or compose escapes. 
The vertical bar indicates selection and is used to separate the arguments 
from which you may select. All other text should be read literally. 

RETURN 

+n 

-n 

$ 

= 

? 

!shell-cmd 

Alias users 

4-40 

Displays the next message. 

[+] With no n argument, it displays the next 
message. If given a numeric argument n, 
goes to the nth message and displays it. 

[ -] 'Vith no n argument, goes to the previ-
0us message and displays it. If given a 
numeric argument n, goes to the nth previ-
0us message and displays it. 

Displays the first message. 

Displays the last message. 

Displays the message number of the current 
message. 

Displays the summary of mail commands in 
/ usr/ lib/mail! mailhelp.cmd. 

Executes the shell command that follows. 
No space is needed after the exclamation 
point. 

Displays system-wide aliases for users. At 
least one user must be specified. 



alias name users 

cd directory 

delete mesg-list 

dp mesg-list 

echo path 

edit mesg-list 

exit[!] 

file 

mail 

[a] Aliases users to name. With no name 
arguments, displays all currently defined 
aliases. With one argument, displays the 
users aliased by the given name argument. 

[c] Changes the user's working directory to 
the specified directory. If no directory is 
given, then changes to the user's home 
directory. 

[ d] Deletes each message in the given 
message-list. 

Deletes the current message and displays 
the next message. 

Expands shell metacharacters. 

[e] Takes the given message-list and points 
the text editor at each message in tum. On 
return to command mode, the edited mes­
sage is read back in. See also the visual 
command. 

[x] Immediately returns to the shell without 
modifying the system mailbox, the user 
mailbox, or a file specified with the -f 
switch. 

[fi] Displays the name of the mailbox file. 

forward mesg-num user-list 
[f] Takes a user-list argument and for­
wards the current message to each name. 
The message sent to each is indented and 
shows that the sender has passed it on. The 
mesg-num argument is optional, and is 
used to forward the numbered message 
instead of the default message. 

Forward mesg-num user-list 
[F] Same as forward except that the mes­
sage is not indented. 

4-41 



XENIX User's Guide 

4-42 

headers +n I -n I mesg-list 
[h] With no argument, lists the current 
range of headers, which is an 18-message 
group. If a plus (+) argument is given, then 
the next 18-message group is displayed, and 
if a minus (-) argument is given, the previ-
0us 18-message group is displayed. Both 
plus and minus accept an optional numeric 
argument indicating the number of header­
windows to move forward or backward. If a 
message-list is given, then the message­
header for each message in the list is 
displayed. 

help Same as ? above. Prints the summary of 

hold mesg-list 

list 

Ipr mesg-list 

mail [user-list J 

mbox mesg-list 

mail commands in 
lusrlliblmaillmailhelp.cmd. 

[ho] Takes a message-list and marks each 
message to be saved in the user's system 
mailbox instead of in mbox. 

Prints list of mail commands. 

[I] Prints each of the messages in the 
required message-list on the lineprinter. 
Messages are piped through pr before being 
printed. 

[m] Takes an optional user-list argument 
and sends mail to each name after entering 
compose mode. 

[mb] Marks messages given in the 
message-list argument to be saved in the 
user mailbox when a quit is executed. Mes­
sage headers contain an initial letter "M" 
to show that they are to be saved. 

move mesg-list mesg-num 
Places the messages specified in mesg-list 
after the message specified in mesg-num. If 
mesg-num is 0, mesg-list moves to the top of 
the mailbox. 



print mesg-list 

quit 

reply mesg-list 

Reply mesg-list 

restart 

save mesg-list filename 

mail 

[p] Takes a message-list and displays each 
message on the user's terminal. 

[q] Terminates the mail session, retaining 
all nondeleted, unsaved messages in the sys­
tem mailbox. If the autombox option is set, 
then examined messages are saved in the 
user mailbox, deleted messages are dis­
carded, and all messages marked with the 
hold command are retained in the system 
mailbox. 

If you are executing a quit while editing a 
mailbox file with the -f flag, the mailbox file 
is rewritten and the user returns to the shell. 

[r] Takes a message-list and sends mail to 
each message author just like the mail com­
mand. 

[R] Sends a reply to users named in the To: 
and Cc: fields, as well as the original 
sender. 

Reads in mail that arrives during the current 
mail session. 

[s] Takes an optional message-list and a 
filename and appends each message in tum 
to 
the end of the file. The default message is 
the current message. 

set [se] Displays a list of available options. 

set option-list 

shell 

[se] With no arguments, displays all vari­
able values. Otherwise, sets option. Argu­
ments are of the form option=value, if the 
option is a string option or just option, if the 
option is a switch. Multiple options may be 
set on one line. 

[sh] Invokes an interactive version of the 
shell. 

4-43 



XENIX User's Guide 

size mesg-list 

source file 

string string mesg-list 

top 

undelete mesg-list 

unset options 

visual mesg-list 

whois 

[si] Takes a message-list and displays the 
size in characters of each message. 

[so] Reads and executes mail commands 
from the named file. 

Searches for string in mesg-list. If no mesg­
list is specified, all undeleted messages are 
searched. Ignores case in search. 

[t] Takes a message-list and displays the top 
five lines. The number of lines displayed is 
set by the variable top lines . 

[u] Takes a message-list and marks each 
one as not being deleted. Each message in 
the list must previously have been deleted. 

[uns] Takes a list of option names and dis­
cards their remembered values; this is the 
opposite of set. 

[v] Takes a message-list and invokes the vi 
editor on each one. 

Looks up a list of target mail recipients and 
prints the real names or descriptions of each 
recipient. If the first character of the first 
argument is alphabetic, the arguments are 
looked up without change. Otherwise, the 
arguments are assumed to be a message list, 
in the format specified in the mail User's 
Guide. For each message in the list, the 
"From" person is extracted from the header 
and added to list of users to be searched. 

write mesg-list filename 

4-44 

[ w] Writes the message bodies of messages 
given by the message-list to the file given 
by filename. 



mail 

4.8.2 Compose Escape Summary 

Compose escapes are used when composing messages to perform special 
functions. They are only recognized at the beginning of lines. The escape 
character can be set with the escape string option.(See the section "The 
escape String.") Abbreviations for each escape are in brackets. 

Here is a summary of the compose escapes: 

--string Inserts the string of text in the message prefaced 
by a single tilde C). 

Prints out help for compose escapes on terminal. 

Same as Ctrl-d on a new line. 

-!command Executes a shell command, then returns to com­
pose mode. 

-, command Pipes the message body through the command as 
a filter. Replaces the message body with the out­
put of the filter. If the command gives no output 
or terminates abnormally, retains the original 
message body. 

- mail-command Executes a mail command, then returns to com­
pose mode. 

-:mail-command Executes a mail command, then returns to com­
pose mode. 

-alias [-a] Displays a list of private aliases. 

-alias aliasname [-a] Displays the names included in private 
aliasname. 

-alias aliasname users 

-Alias 

[-a] Adds users to private alias name list. 

[-A] Performs aliasing by first examining private 
aliases and then system-wide aliases using all 
three global alias files. Only the final result is 
printed (non-local mail recipients will have the 
complete delivery path printed). The user list is 
taken from header fields. 

4-45 



XENIX User's Guide 

-Alias users 

-bee name ... 

-ee name ... 

-dead 

-editor 

-headers 

-message mesg-list 

-Message mesg-list 

-print 

-quit 

-read filename 

-Return name 

4-46 

[-A] Performs aliasing by first examining private 
aliases and then system-wide aliases using all 
three global alias files. Only the final result is 
printed (non-local mail recipients will have the 
complete delivery path printed). At least one 
user must be specified. 

[-b] Adds the given names to the Bee: field. 

[-e] Adds the given name to the cc: field. 

[-d] Reads the file dead.letter from your home 
directory into the message. 

[-e] Invokes the line editor on the message being 
sent. Exiting the editor returns the user to com­
pose mode. 

[-h] Edits the message heading fields by printing 
each one in turn and allowing the user to modify 
each field. 

[-m] Reads the named messages into the mes­
sage being sent, shifted right one tab. If no mes­
sages are specified, reads the current message. 

[-M] Same as -message except with no right 
shift. 

[-p] Prints the message buffer prefaced by the 
message heading. 

[-P] Prints the real names or descriptions (in 
parentheses) after each recipient. 

[-q] Aborts the message being sent, copying the 
message to dead. letter in your home directory if 
the save option is set. 

[-r] Reads the named file into the message. 

CR] Adds the given names to the Return­
receipt-to: field. 



-subject string 

-to name ••• 

-visual 

-write filename 

mail 

[-sh] Invokes a shell. 

[-s] Causes the named string to become the 
current subject field. 

[-t] Adds the given names to the To: field. 

[-v] Invokes the vi editor to edit the message 
buffer. Exiting the editor returns the user to com­
pose mode. 

[-w] Writes the message body to the named file. 

4.8.3 Option Summary 

Options are controlled with the set and unset commands. An option is 
either a switch or a string. A switch is either on or off, while a string 
option has a value that is a pathname, a number, or a single character. 
Options are summarized below. 

askcc 

asksubject 

autombox 

autoprint 

chron 

dot 

Causes prompting for additional carbon copy reci­
pients at the end of each message. Pressing RETURN 
retains the current list. 

Causes prompting for the subject of each message 
you send. The subject is a line of text terminated by 
a RETURN. 

Usually messages are retained in the system mailbox 
when the user quits. However, if this option is set, 
examined messages are automatically appended to 
the user mailbox. 

Causes the delete command to behave like dp. 
Thus, after deleting (or undeleting) a message, the 
next one is printed automatically. 

Causes messages to be listed in chronological order. 

Causes a single period on a newline to act as the 
EOT character. The normal end-of-transmission 
character, Ctrl-d, still works. 

4-47 



XENIX User's Guide 

4-48 

EDITOR= Pathname of the text editor to use in the edit com­
mand and -e escape. If not defined, then a default 
editor is used. 

escape=char If defined, sets char as the character to use in place 
of the tilde C) to denote compose escapes. 

ignore Causes interrupt signals from your terminal to be 
ignored and echoed as at-signs (@). 

mchron Causes messages to be listed in numerical order 
(most recently received first), but displayed in chro­
nological order. 

metoo Normally, before sending, the name of the sender is 
removed from alias expansions. If metoo is set, then 
the name of the sender is not removed. 

nosave Prevents saving of the message buffer in the file 
dead.letter in the home directory, after two consecu­
tive interrupts or a -q escape. 

page=n Specifies the number of lines (n) to be printed in a 
"page" of text when displaying messages. 

quiet Suppresses the printing of the version when mail is 
first invoked. 

record= Sets the pathname of the file used to record all out­
going mail. If not defined, then outgoing mail is not 
copied. 

SHELL= Pathname of the shell to use in the ! command and 
the -! escape. A default shell is used if this option is 
not defined. 

toplines= Sets the number of lines of a message to be printed 
with the top command. Default is five lines. 

verify Causes each target mail recipient to be verified. 
This option permits errors made while composing 
messages to be corrected or ignored. 

VISUAL= Pathname of the text editor to use in the visual com­
mand and -v escape. The default is for the vi editor. 



Chapter 5 

Communicating with 

Other Sites 

5.1 Introduction 5-1 

5.2 Using Micnet 5-1 
5.2.1 Transferring Files with rcp 5-2 
5.2.2 Executing Commands with remote 5-3 
5.2.3 Transferring Files with mail 5-5 

5.3 Using UUCP 5-5 
5.3.1 Transferring Files with uucp 5-6 
5.3.2 Transferring Files with uuto 5-11 
5.3.3 Executing Commands with uux 5-13 

5.4 Logging in to Remote Systems 5-15 
5.4.1 Using ct 5-15 
5.4.2 Using cu 5-17 





5.1 Introduction 

The XENIX operating system includes a series of utilities that allow you 
to communicate with other computer sites. The particular utilities you 
use depend on how your computer is connected to the other site, what 
tasks you want to accomplish on the other site, and what operating system 
is running on the other site. 

If the site is in close proximity to your computer,. in the same room, for 
example, then it is likely that the two computers are connected by a sim­
ple serial line. If the site is a XENIX site, use the Micnet commands dis­
cussed in "Using Micnet" below to transfer files between the two sites 
and to execute commands on the remote site. If the site is a UNIX site, 
use the UUCP commands discussed in "Using UUCP" below. 

If, on the other hand, the site you want to communicate with is on another 
floor, or across the country, your computer is connected to it by telephone 
lines. If the site is a XENIX or UNIX site, use the UUCP commands dis­
cussed in "Using UUCP" below to transfer files between the two sites 
and execute commands on the remote site. If the site is not a XENIX or 
UNIX site, use the commands discussed in "Using cu" below. 

Neither the UUCP commands nor the Micnet commands allow you to 
have an interactive session with the remote site. If you want to have an 
interactive session, use the commands discussed in "Using cu" below. 

This chapter assumes that your UUCP and/or Micnet networks are 
configured already. If this is not true, refer to "Building a Remote Net­
work with UUCP" and "Building a Local Network with Micnet" in the 
XENIX System Administrator's Guide for more information. 

5.2 Using Micnet 

A Micnet network is a network of two or more computers connected by 
serial communication lines. A serial communication line is a cable with 
RS-232 connectors on each end. 

The computers in a Micnet network use three commands to "talk" to one 
another. These are rcp, remote and mail. The rcp command is used to 
transfer files between machines in the network. The remote command is 
used to execute XENIX commands on a remote Micnet machine. The 
mail command is used to communicate with users on a remote computer. 
Each of these commands is discussed in the following sections. 

5-1 



XENIX User's Guide 

5.2.1 Transferring Files with rcp 

The rcp command is used to transfer copies of both text and binary files 
between machines connected in a Micnet network. Its syntax is similar to 
that of the cp command: 

rep [options] [src _computer: ]src ..Ji1e [dest _computer: ]dest ....file 

These arguments mean the following: 

src file 

src _computer 

dest file 

dest _computer 

The name of the file that you want to copy. 

The name of the computer on which src Jtle 
is located. 

The name of the copied file on the receiving 
computer. Usually, srcJtle and destJtle are 
the same. 

The name of the computer on which 
dest Jtle is located. 

You must have read permission on the source file and read and execute 
permissions on the directory that contains the source file in order to copy 
it with rcp. In addition, you must have write permission on the directory 
on the computer that is to receive the source file. 

As an example, suppose you have three computers named machine}, 
machine2 and machine3 connected in a Micnet network. Suppose also 
that you want to send a copy of a file named trans/tie in the lusrlmarkt 
directory on machine} to the /tmp directory on machine3. To do so, enter 
the following command: 

rcp machinel:/usr/markt/transfile machine3:/tmp/trans file 

If you are in the directory that contains the source file, specify the 
filename only. You do not have to specify the full machine and path­
name. Using the example above, enter the following command from 
lusrlmarkt on machine} to copy trans/tie to Itmp on machine3: 

rcp transfile machine3:/tmp/trans file 

5-2 



Communicating with Other Sites 

In addition to using rep to send copies of files to remote computers, you 
can use rep to retrieve copies of files from remote computers. Using the 
example above, suppose that machine3 is your local computer and that 
you want to get a copy of lusrlmarktltransfile from machine}. To do so, 
enter the following command: 

rep maehinel:/usr/marktltransfile Itmp/transfile 

This command would place a copy of lusrlmarktltransfile on machine} in 
the Itmp directory on machine3. 

Because files are not sent immediately, an rep transfer may take a few 
minutes. are copied to a spool directory and sent when the appropriate 
daemons "awaken." (A daemon is a program that periodically runs in 
the background.) In the case of rep, the daemon that transfers files is the 
daemon.mn daemon. 

rep Options 

Two options are available for use with rep. These are -m and 
-u [machine:]user. The -m option causes mail to be sent to the user who 
entered the rep command, reporting on the success or failure of the 
transfer. If you want mail to report to another user, use 
-u [machine:]user. This causes mail to report to user on machine. 

The following command, issued from lusrlmarkt on machine}, sends a 
copy of lusrlmarktltransfiie on machine} to the Itmp directory on 
machine3. Since the -m option is specified, mail will be sent reporting on 
the success or failure of the command: 

rep -m transfile maehine3:/tmp/transfile 

For more information on the rep command, see rcp(C). 

5.2.2 Executing Commands with remote 

The remote command allows execution of commands across serial lines. 
The syntax of the remote command is: 

remote [options] site _name command [arguments] 

If the remote command produces output, that output is mailed to your sys­
tem mailbox. Otherwise, remote sends mail only if the remote command 
fails to execute. 

5-3 



XENIX User's Guide 

As an example, suppose that you are working on machine} and that you 
want to list the contents of the Itmp directory on machine2. To do so, 
enter the following command: 

remote machine2 Is Itmp 

Since the Is command produces output, the output is mailed to you. In 
this case, your mail contains a listing of the contents of Itmp on machine2. 

remote Options 

Two very useful options to the remote command are the -m and -ffile 
options. The -m option sends mail to you reporting on the success or 
failure of the command execution. Suppose, for example, that you want 
to remove Itest from Itmplmarkt on machine2. To do so, enter the follow­
ing command: 

remote -m machine2 rm Itmp/markt/test 

After this command is executed, you receive mail reporting on the suc­
cess or failure of the rm command. 

The -ffile option allows you to specify a file on the local computer that 
contains the input for the command that is to be executed on the remote 
computer. As an example, suppose that you have a file named chapter} 
on your local computer that you want to print on machine2' s default 
printer. To do so, enter the following command: 

remote -m -f chapter! machine2 Ip 

Because the -m option is specified, you are informed by mail of the suc­
cess or failure of the remote command. 

5-4 



Communicating with Other Sites 

Note 

The system administrator can specify which commands are allowed 
to execute remotely over serial lines on which computers. The 
commands that are allowed to execute remotely on a XENIX com­
puter are listed in the computer's letcldejaultlmicnet file. Any 
XENIX command can execute remotely if the computer's 
letcldejaultlmicnet file contains the statement executeall on a line 
by itself. 

5.2.3 Transferring Files with mail 

The mail command can be used to transfer files between computers in a 
Micnet network. However, there are several drawbacks to using mail for 
this purpose: 

• You must transfer the file to a user on the remote system, rather 
than to a directory. 

• You can only use mail to transfer small files. Large files are ran­
domly truncated by mail. 

• You cannot transfer binary files with mail. 

On the other hand, mail is very useful for sending small files to several 
users at once on a remote system. For information on using mail, see 
, 'mail" in this guide. 

5.3 Using UUCP 

UUCP is a series of programs that provide networking capabilities for 
XENIX/UNIX systems. While UUCP commands can be used over serial 
lines, they are usually used on computers connected by telephone lines. 

The UUCP programs allow you to transfer files between remote computers 
and to execute commands on remote computers. Since the computers 
may be connected by telephone lines, UUCP transfers can take place over 
thousands of miles. A UUCP site in New York City can transfer a file to 
or execute a command on a connected UUCP site in San Francisco, or 
Jakarta, or anywhere in the world. The following sections explain how to 
use these UUCP programs. 

5-5 



XENIX User's Guide 

5.3.1 Transferring Files with uucp 

Both the uucp and uuto commands can be used to transfer copies of 
binary and text files between remote UUCP sites. There are advantages 
and disadvantages to each. The uucp command gives you great flexibil­
ity in specifying where on the remote system the transferred file is to be 
placed. However, uucp syntax can be rather long and complicated. The 
uuto command, on the other hand, is easy to use. But uuto restricts 
where you can place the file on the remote system. In addition, retrieving 
a file sent with uuto is slightly more complicated than retrieving a file 
sent with uucp. 

The uucp command is discussed in this section. The uuto command is 
discussed in the following section. 

Before You Begin 

Before you can copy files to remote sites with uucp, you must verify that: 

• Your local site is a "dial out" site. 

• Your local site "knows" how to call the remote site. 

• The files that you want to send have read permission set for others. 

• The directory that contains the file that you want to send has read 
and execute permissions set for others. 

• Your computer has write permission in the directory on the remote 
site to which you want to copy the file. 

Each of these is discussed below. 

Some UUCP sites are "dial-in" sites, some are "dial-out" sites, and 
some are both. Verify that your site is a dial-out site. If it is not, your 
computer might have the capability to be on the receiving end of a UUCP 
connection, but not on the calling end. 

You must be sure that your computer "talks" to the site with which you 
want to communicate. The uuname command gives you this informa­
tion. Entering uuname with no options lists the UUCP sites your com­
puter talks to directly. Entering uuname with the -I option causes the 
name of your computer to be displayed. 

5-6 



Communicating with Other Sites 

Note that you may be able to communicate with a site that does not show 
up in a uuname listing. This is possible because UUCP sites are often 
"chained together." So if you know that a site you want to transfer files 
to communicates with a site that your system communicates with, you 
can send files to the first site through the second. An example is provided 
below under "Indirect Transfers." 

In order to copy a file to a remote UUCP site, the file must have read per­
mission set for others and the directory that contains the file must have 
read and execute permissions set for others. Use the I command to exam­
ine the file's permissions and the I -d command to examine the 
directory's permissions. If the permissions are not correct, enter the fol­
lowing commands to set the correct permissions: 

chmod o+r filename 
chmod o+rx directory 

Finally, you must verify that your computer has write permission on the 
directory on the remote site to which you want to transfer files. Each 
remote UUCP site has a /usrllib/uucp/Permissions file. This file specifies 
the directories on that site from which your computer can read and to 
which your computer can write. You can only send a file to a directory on 
a remote site if your computer has write permissions on that directory, as 
specified on the remote site's /usr//ib/uucpIPermissions file. 

By default, most UUCP sites permit calling-in computers to write to their 
lusrlspoolluucppublic directory. Since there is no way to find out which 
directories your computer can write to on the remote site, short of con­
tacting somebody at the site, the safest thing to do when making a UUCP 
transfer is to write to lusrlspoolluucppub/ic. The procedure for doing this 
is outlined below. 

Using uucp 

The syntax of the uucp command is similar to the syntax of cp: 

uucp [options] src _computer! src yle dest _ computer!dest Yle 

These arguments mean the following: 

src file 

src _computer 

The name of the file that you want to copy. 

The name of the computer on which src Jtle 
is located. 

5-7 



XENIX User's Guide 

dest file 

dest _computer 

The name of the copied file on the receiving 
computer. Usually, srcJtle and destJtle are 
the same. 

The name of the computer on which 
dest Jtle is located. 

There are several different ways to specify the location on the remote 
machine to which you want to transfer the file. The simplest is the 
-Idest Jtle specification. This is also the safest specification, because 
-ldestJtle is expanded to lusrlspoolluucppublic/destJtle, thereby assur-
ing that the transfer will succeed. 

For example, to send lusrlmarktltransfile on machine} to 
lusrlspoolluucppub/ic on machine2, enter the following command: 

uucp lusr/markt/transfile machine2! -/transfile 

This command creates the file lusrlspoolluucppub/ic/transfile on 
machine2. 

If lusrlmarkt is your current directory, you can copy transfile to machine2 
with the following command: 

uucp transfile machine2! -/transfile 

The uucp command works much like the rcp command. Files are not 
copied and sent immediately. Instead, copies are placed in a spool direc­
tory and sent once the appropriate daemon awakens. In the case of the 
UUCP programs, the daemon is the uucico daemon. Depending on how 
your system is configured, a uucp transfer might take place within 
minutes, or it might take hours. 

5-8 



Lommumeatmg WIth Uther ~Ites 

Note 

Since the exclamation mark has special meaning to the C-shell, you 
must "escape" with a backslash (\) any exclamation marks that 
appear in a uuep command, if you are using the C-shell. For a C­
shell user, the command above is specified as: 

uuep transfile maehine2\! -Itransfile 

Another form of the command allows you to specify the full pathname of 
the copied file on the remote computer. This is for sending the file to a 
specific directory on the remote system. However, you must be sure that 
your computer has write permission on this directory, otherwise the 
transfer will fail. 

As an example, suppose that you want to send transfile in lusrlmarkt on 
machine} to the lusrlcindy directory machine2. To do so, enter the follow 
ing command: 

uuep lusr/marktltransfile maehine2!1usr/cindy/transfile 

Note that, like the rep command, the uuep command can be used to 
retrieve files from a remote site, in addition to copying files to a remote 
site. Using the example above, if your local computer is machine2 and 
you want to send a copy of lusrlmarktltransfile on machine} to the 
lusrlcindy directory on machine2, enter the following command: 

uucp machinel!1usr/marktltransfile lusr/cindy/transfile 

You can also use -user to specify a location on the remote computer. The 
-user argument is expanded to the pathname of the home directory of the 
person on the remote computer whose login is user. For example, if 
lusrlcindy is the home directory of a user whose login is cindy on 
machine2, enter the following command from the lusrlmarkt directory on 
machine} to copy lusrlmarktltransfile to lusrlcindy: 

uucp transfile machine2!-cindy/transfile 

The receiving computer expands -cindy to the full pathname of cindy's 
home directory, creating lusrlcindyltransfile. Again, your computer must 

5-9 



XENIX User's Guide 

have write pennission in cindy's home directory in order for this transfer 
to succeed. 

Indirect Transfers 

You might be able to send files to a UUCP site not listed in a lluname list­
ing. As an example, suppose that your local computer is connected to a 
UUCP site named machine2. Suppose also that machine2 is connected to 
a UUCP site named machine3. You can send Itmpltransfile on your local 
computer to lusrlspool/uucppublic on machine3. Do so by specifying the 
full UUCP address relative to your local computer: 

uucp Itmp/transfile machine2!machine3! -/transfile 

Note that each site name in the command line is followed by an exclama­
tion mark. By placing several site names in a uucp command line, you 
can greatly extend the range of systems to which you can copy files with 
uucp. This is also true for the uuto and uux commands discussed below. 

uucp Options 

Several options are available for the uucp command. Some of the most 
useful are the -m and -n user options. 

The -m option sends you mail reporting on the success or failure of the 
file transfer. The -0 user option notifies the user on the machine to whom 
the files are sent of the file transfer. 

Other options are available for use with uucp. Refer to uucp(C) for a 
complete list of these options. 

Checking the Status with uustat 

You can use the uustat command to check on the status of files you 
copied with uucp. To check on the status of all your uucp jobs, enter the 
following command: 

uustat 

5-10 



Communicating with Other Sites 

Your output looks like the following: 

1234 markt machine2 2/19-10:29 2/19-10:40 JOB IS QUEUED 

Reading from left to right, the elements of this message are: 

1234 

markt 

machine2 

2/19-10:29 

2/19-10:40 

Job Status 

This is the job number assigned to this uucp 
transfer. 

This is the user who requested the transfer. 

This is the site name of the recipient's com­
puter. 

This is the date and time the job was queued in 
the spool directory. 

This is the date and time of the uustat request. 

This message tells you the status of the job. In 
this case, JOB IS QUEUED tells you that the job 
is in the spool directory waiting to be sent. 
When the transfer is completed, uustat displays 
the message: 
COpy FINISHED, JOB DELETED 

Several options are available for use with uustat. Refer to uustat(C) for 
more information. 

5.3.2 Transferring Files with uuto 

The uuto command allows you to copy files to the public directory of a 
UUCP site to which your system is connected. The public directory on 
most XENIX/UNIX systems is lusrlspoolluucppub/ic. The syntax of uuto 
is: 

uuto [options] source Jtle destination _ computerflogin 

The login argument is the login of the user to whom you are sending files. 

5-11 



XENIX User's Guide 

Before you can send a file with uuto, you must verify that: 

• The file has read permission set for others. 

• The directory that contains the file has read and execute permis­
sions set for others. 

If the permissions are not correct, enter the following commands to set 
the correct permissions: 

chmod o+r filename 
chmod o+rx directory 

Files sent with uuto are placed in the directory: 

/usr/ spoolluucppubliC/ receive/ login/ source_computer 

In this example, login is the login of the user to whom you are sending 
files and source_computer is the site name of your system. 

As an example, suppose that you want to send a copy of transfile in /tmp 
on your computer, machine}, to a user whose login is cindy on machine2. 
To do so, enter the following command: 

uuto /tmp/transfile machine2!cindy 

This command copies transfile to the following directory: 

usr/spoolluucppubliC/ receive/ cindy/machine} 

When the file transfer is complete, the recipient is notified by mail that 
the file has arrived. If the -m option is used on the uuto command line, 
the sender is notified by mail of the success or failure of the transfer. 

Like uucp, files transferred with uuto are not transferred immediately 
after the command is entered. Instead, they are placed in a spool direc­
tory and sent when the uucico daemon awakens. 

Retrieving Files with uupick 

In order to retrieve a file sent by uuto, you must use the uupick com­
mand. To execute uupick, enter the following command: 

uupick 

5-12 



Communicating with Other Sites 

The uupick program searches the public directory for any files sent to 
you. If it finds any, it responds with the following prompt: 

from source_computer: file filename? 

The source_computer is the name of the sender's computer and filename 
is the name of the file transferred. In the example above, if the uuto 
transfer to cindy on machine2 is successful, cindy sees the following 
uupick prompt: 

from machinel: file transfile ? 

Several options are available for responding to the uupick prompt. Two 
of the most useful are m [dir] and d. The m [dir] option tells uupick to 
move the file to directory dir. Once in dir, you can manipulate the file as 
you would any other file on your system. In the example above, cindy 
could enter the following in response to the uupick prompt: 

m $HOME 

This causes transfile to be moved from the public directory to cindy's 
home directory. If no directory is specified after m, the file is moved to 
the recipient's current directory. 

Entering d at the uupick prompt causes the file to be deleted from the 
public directory. You can quit uupick by entering q. Note other uupick 
options are available. Refer to uupick(C) for a complete list of these. 

5.3.3 Executing Commands with uux 

The uux command is used to execute commands on remote UUCP sites 
and on files gathered from remote UUCP sites. For security reasons, the 
commands available for remote execution on a computer are often very 
limited. A computer's /usr//ib/uucp/Permissions file lists the commands 

5-13 



XENIX User's Guide 

that can be executed remotely on that computer. If you attempt to exe­
cute a command not listed in this file, you will receive mail indicating 
that the command cannot be executed on the computer in question. 

The syntax of uux is: 

uux [options] command-line 

TtJ.e command-line argument looks like any other XENIX command line, 
with the exception that commands and filenames may be prefixed with 
site-name!. 

The following is an example of how to execute a command on a remote 
system. The command causes /tmp/printfile on machine2 to be sent to 
machine2' s default printer: 

uux machine2!lp machine2!/tmp/printfile 

Note that prefixing a site name to a command causes the command to be 
executed on that site. 

The following is an example of how to execute a command on a local sys­
tem on files gathered with uux from remote systems. Suppose that your 
local computer is connected to both machine2 and machine3. Suppose 
also that you want to compare the contents of /tmp/chptl on machine2 
with /tmp/ chptl on machine3. To do so, enter the following command: 

uux "diff machine2!/tmp/ chptl machine3!1tmp/ chptl > diff.file" 

This command will compare the contents of the files on machine2 and 
machine3 and place the output in difffile in the current directory on the 
local computer. Since there is no site name prefixed to the diff command, 
the command is executed locally. 

Note that, in the example above, the uux command line is placed in quo­
tation marks. This is because it contains the redirect symbol ( ». In gen­
eral, place the uux command line in quotation marks whenever the com­
mand line contains special shell characters such as <, >, I, and so forth. 

5-14 



Communicating with Other Sites 

5.4 Logging in to Remote Systems 

The ct command connects your system to a remote terminal with a 
modem attached. The Cll command connects your system to a remote sys­
tem. The remote system can be attached via phone lines or via a simple 
serial line. These commands differ from the Micnet commands and the 
UUCP commands discussed above in that your session with the remote 
system is interactive. The remote system "sees" you as just another user 
on the system. Both ct and cu are discussed below. 

5.4.1 Using ct 

The ct command connects a local computer to a remote terminal 
equipped with a modem and allows a user on that terminal to log in to the 
computer. To do this, the command dials the phone number of the remote 
modem. The remote modem must be able to answer the call automati­
cally. When ct detects that the call has been answered, it issues a getty 
(login) process for the remote terminal and allows a user on the terminal 
to log in on the computer. 

This command is especially useful when issued from the opposite end, 
that is, from the remote terminal itself. If you are using a remote terminal 
and you want to avoid long distance charges, you can use ct to have the 
computer place a call to your terminal. To do so, simply call the com­
puter, log in, and issue the ct command. The computer will hang up the 
line and call your terminal back. 

If ct cannot find an available dialer, it tells you that all dialers are busy 
and asks if it should wait until one becomes available. If you answer yes, 
it asks how long (in minutes) it should wait. If you answer no, ct quits. 

The syntax of ct is: 

ct [options] telno 

The argument telno is the telephone number of the remote terminal. 

As an example, suppose that you have a terminal with a modem attached 
at home and that you want to log in to the computer at work from this ter­
minal. To avoid long distance charges, first call your work computer and 
log in. Then issue the ct command to make the computer hang up and 

5-15 



XENIX User's Guide 

call your terminal back. If your phone number is 932-3497, the ct com­
mand is: 

ct -s1200 9323497 

The -s option tells ct to call the modem at 1200 baud. If no device is 
available on the computer at work, you see the following message after 
executing ct: 

The one 1200 baud dialer is busy 
Do you want to wait for dialer? (y for yes): 

If you type n (no), the ct command exits. If you type y (yes), ct prompts 
you to specify how long ct should wait: r Time, in minutes? 

If a dialer is available when you enter the ct command, you see the fol­
lowing message: r Allocated dialer at 1200 baud 

This means that a dialer has been found. You are then asked if you want 
the line connecting your remote terminal to the computer to be dropped: 

Proceed to hang-up? (y to hang-up, otherwise exit) : 

Since you want to avoid long-distance charges by having the computer 
call you, answer y (yes), You are then logged off and ct calls your remote 
terminal back. 

5-16 



Communicating with Other Sites 

As another example, suppose that you are logged in on a computer 
through a local terminal and that you want to connect a remote terminal 
to the computer. The phone number of the modem on the remote terminal 
is 932-3497. To connect the terminal, enter the following command: 

nohup et -h -s1200 9323497 & 

The -h option tells et not to disconnect the local terminal (the terminal on 
which the command was issued) from the computer. After the command 
is executed, a login prompt is displayed on the remote terminal. The user 
can then log in and work on the computer just as on a local terminal. 

Several options are available for et. Refer to et(C) for a complete list of 
these options. 

5.4.2 Using eu 

The eu command connects your local computer to a remote computer and 
allows you to be logged in on both computers simultaneously. The 
remote computer does not have to be a XENIX or UNIX computer. 

If the remote computer is a XENIX or UNIX computer, eu allows you to 
move back and forth between the two computers, transferring files and 
executing commands on both. Note that eu only allows you to transfer 
text files. You cannot transfer binary files with cu. To transfer binary 
files to a remote XENIX or UNIX computer, use e~ther rep or uuep. 

The syntax of the eu command is: 

eu [options] target 

The target argument can take one of three forms: 

phone number This is the number of the remote computer 
to which you want to connect. You can 
embed equal signs, which represent secon­
dary dial tones, and dashes, which represent 
four-second delays, in the phone number. A 
sample phone number might be 
4084551222--341. This number contains an 
area code and number, two dashes for an 
eight second delay and an extension. 

5-17 



XENIX User's Guide 

system-name 

-I line 

-I line dir 

This is the name of a system that is listed in 
the lusrllibluucplSystems file. The cu com­
mand obtains the telephone number and the 
baud rate of system-name from this file. 
The -s, -n, and -I options should not be used 
with system-name. To see the list of com­
puters in the Systems file, enter: Ullname. 

This is the device name of the serial line 
connected to the remote computer. It has 
the form ttyXX, where XX is the number of a 
serial line. 

Connects directly with serial line instead of 
making a phone connection. 

Several options are available for use with the co command. Refer to 
Cll(C) for a complete list of these options. 

Once the connection is made, if the remote computer is a XENIX or UNIX 
machine, you are presented with a log-in prompt. Log in as you would if 
you were connected locally. When you finish working on the remote 
computer, log off as you would if you were connected locally. Then ter­
minate the co connection by entering a tilde followed by a period (-.). 
You are still be logged in on the local computer. 

As an example, suppose that you want to log in to a remote XENIX com­
puter via the phone lines. Suppose also that the remote computer's 
number is 847-7867. To connect to the remote computer, enter the fol­
lowing command: 

ell -s1200 8477867 

The -s1200 option causes ell to use a 1200 baud dialer. If the -s option is 
not specified, ell uses the first available dialer at the speed specified in the 
Devices file. 

5-18 



Communicating with Other Sites 

When the remote XENIX computer answers the call, cu notifies you that 
the connection has been made by displaying the following message: r Connected 

Next, you are prompted for your login: 

Enter your login and password. Once you enter this information, you can 
use this computer as if you were logged in locally. When you are 
finished, logout and then enter: 

-. 

This terminates the cu session. 

cu Command Strings 

Several "Command Strings" are available with ell that allow your local 
computer to communicate with a remote XENIX or UNIX computer. Two 
of the most useful are take and put. 

The take command allows you to copy files from the remote computer to 
the local computer. Suppose, for example, that you want to copy a file 
named proposal in the current directory of the remote computer to your 
home directory on the local computer. To do so, enter the following com­
mand: 

-%take proposal $home/proposal 

Note that you have to prefix a tilde and a percent sign (-%) to the take 
command, and that the tilde must be placed at the start of a line. For this 
reason, it is a good idea to press RETURN before using take. 

5-19 



XENIX User's Guide 

The put command allows you to do the opposite of take. It copies files 
from the local computer to the remote computer. Suppose, for example, 
that you want to copy a file named minutes from your home directory on 
the local computer to the Itmp directory of the remote computer. Suppose 
also that you want the file to be called minutes.9-18 on the remote com­
puter. To do so, enter the following command: 

-%put $home/minutes Itmp/minutes.9-18 

Like the take command, you have to prefix a tilde and a percent sign 
( - %) to the put command, with the tilde coming at the beginning of a 
line. Note also that take and put copy only text files, and only to XENIX 
or UNIX computers. They do not copy binary files. 

Note 

The cu command cannot detect or correct transmission errors. After 
a file transfer, you can check for loss of data by running the sum 
command on both the file that was sent and the file that was 
received. This command reports the total number of bytes in each 
file. If the totals match, your transfer was probably successful. See 
the sum (C) manual page for details. 

Other command strings are available for use with cu. For a complete list 
of these, see cu(C). 

5-20 



Chapter 6 

bc: A Calculator 

6.1 Introduction 6-1 

6.2 Demonstration 6-1 

6.3 Tasks 6-4 
6.3.1 Computing with Integers 6-4 
6.3.2 Specifying Input and Output Bases 6-6 
6.3.3 Scaling Quantities 6-7 
6.3.4 Using Functions 6-9 
6.3.5 Using Subscripted Variables 6-11 
6.3.6 Using Control Statements: if, while and for 6-11 
6.3.7 Using Other Language Features 6-14 

6.4 Language Reference 6-15 
6.4.1 Tokens 6-15 
6.4.2 Expressions 6-16 
6.4.3 Function Calls 6-18 
6.4.4 Unary Operators 6-18 
6.4.5 Multiplicative Operators 6-19 
6.4.6 Additive Operators 6-20 
6.4.7 Assignment Operators 6-20 
6.4.8 Relational Operators 6-21 
6.4.9 Storage Classes 6-21 
6.4.10 Statements 6-22 





6.1 Introduction 

be is a program that can be used as an arbitrary precision arithmetic cal­
culator. be output is interpreted and executed by a collection of routines 
which can input, output, and do arithmetic on indefinitely large integers 
and on scaled fixed-point numbers. Although you can write substantial 
programs with be, it is often used as an interactive tool for performing 
calculator-like computations. The language supports a complete set of 
control structures and functions that can be defined and saved for later 
execution. The syntax of be has been deliberately selected to agree with 
the C language; those who are familiar with C will find few surprises. A 
small collection of library functions is also available, including sin, cos, 
arctan, log, exponential, and Bessel functions of integer order. 

Common uses for be are: 

• Computation with large integers. 

• Computations accurate to many decimal places. 

• Conversions of numbers from one base to another base. 

There is a scaling provision that permits the use of decimal point nota­
tion. Provision is made for input and output in bases other than decimal. 
Numbers can be converted from decimal to octal simply by setting the 
output base equal to 8. 

The actual limit on the number of digits that can be handled depends on 
the amount of storage available on the machine, so manipulation of 
numbers with many hundreds of digits is possible. 

6.2 Demonstration 

This demonstration is designed to show you: 

• How to get into and out of be. 

• How to perform simple computations. 

• How expressions are formed and evaluated. 

• How to assign values to registers. 

6-1 



XENIX User's Guide 

A normal session with bc begins by invoking the program with the com­
mand: 

bc 

To exit bc enter: 

quit 

or press Ctrl-d. Once you have entered bc, you can use it very much like 
a normal calculator. As with the XENIX shell, commands are read as 
command-lines, so each line that you enter must be terminated by a 
RETURN. Throughout this chapter, the RETURN is implied at the end of 
each command line. Within bc, normal processing of other keys, such as 
BACKSPACE and INTERRUPT, also works. 

For example, enter the simple integer 5: 

5 

Output is immediately echoed on the next line to the standard output, 
which is normally the terminal screen: 

Here 5 is a simple numeric expression. However, if you enter the expres­
sion: 

5*5.25 

(where the star (*) is the multiplication operator) a computation is exe­
cuted and the result printed on the next line: r 26.25 

What has happened here is that the line 5*5.25 has been evaluated, i.e., 
the expression has been reduced to its most elementary form, which is the 
number 26.25. The process of evaluation normally involves some type of 

6-2 



be: A Calculator 

computation such as multiplication, division, addition, or subtraction. For 
example, all four of these operations are involved in the following expres­
sion: 

(10*5)+50-(50/2) 

When this expression is evaluated, the subexpressions within parentheses 
are evaluated first, just as they would be with simple algebra, so that an 
intermediate step in the evaluation is "50+50-25" which ultimately 
reduces to the number "75". 

The simple addition: 

10.45+5.5555555 

produces the output: 

1'6. 0055555 

Note how precision is retained in the above result. 

The two-part multiplication: 

(8*9)*7 

produces the answer: 

The last part of this demonstration shows you how to store values in spe­
cial alphabetic registers. For example, enter: 

a=IOO ; b=5 

What happens here is that the registers a and b are assigned the values 
100 and 5, respectively. The semicolon is used here to place multiple be 
statements on a single line, just as it is used in the XENIX shell. This 
command line produces no output because assignment statements are not 

6-3 



XENIX User's Guide 

considered expressions. However, the registers a and b can now be used 
in expressions. Thus you can now enter: 

a*b;a+b 

to produce: 

To exit be, remember to enter: 

quit 

or press Ctrl-d. 

This ends the demonstration. Following sections describe use of be in 
more detail. The final section of this chapter is a be language reference. 

6.3 Tasks 

This section describes how to perform common be tasks. Mastery of 
these tasks should tum you into a competent be user. 

6.3.1 Computing with Integers 

The simplest kind of statement is an arithmetic expression on a line by 
itself. For instance, if you enter: 

142857 + 285714 

and press RETURN, be responds immediately with the line: 

6-4 



be: A Calculator 

Other operators also can be used. The complete list includes: 

+ _ * / 96 A 

They indicate addition, subtraction, multiplication, division, modulo 
(remaindering), and exponentiation, respectively. Division of integers 
produces an integer result truncated toward zero. Division by zero pro­
duces an error message. 

Any term in an expression can be prefixed with a minus sign to indicate 
that it is to be negated (this is the' 'unary" minus sign). For example, the 
expression: 

7+-3 

is interpreted to mean that -3 is to be added to 7. 

More complex expressions with several operators and with parentheses 
are interpreted just as in FORTRAN, with exponentiation C') performed 
first, then multiplication (*), division (f), modulo (96), and finally, addi­
tion (+), and subtraction (-). The contents of parentheses are evaluated 
before expressions outside the parentheses. All of the above operations 
are performed from left to right, except exponentiation, which is per­
formed from right to left. 

Thus the following two expressions: 

are equivalent, as are the two expressions: 

a*b*c and (a*b)*c 

be shares with FORTRAN and C the convention that a/b*c is equivalent 
to (a/b)*c. 

Internal storage registers to hold numbers have single lowercase letter 
names. The value of an expression can be assigned to a register in the 
usual way, thus the statement: 

x=x+3 

has the effect of increasing by 3 the value of the contents of the register 
named "x". When, as in this case, the outermost operator is the assign­
ment operator (=), then the assignment is performed but the result is not 
printed. There are 26 available named storage registers, one for each 
letter of the alphabet. 

6-5 



XENIX User's Guide 

There is also a built-in square root function whose result is truncated to an 
integer (see also Section 6.5.3.3, "Scaling"). For example, the lines: 

x = sqrt(l91) 
x 

produce the printed result: 

6.3.2 Specifying Input and Output Bases 

There are special internal quantities in be, called ibase and obase. ibase 
is initially set to 10, and determines the base used for interpreting 
numbers that are read by be. For example, the lines: 

ibase = 8 
11 

produce the output line: 

and you are all set up to do octal to decimal conversions. However, 
beware of trying to change the input base back to decimal by entering: 

ibase = 10 

Because the number lOis interpreted as octal, this statement has no 
effect. For those who deal in hexadecimal notation, the uppercase charac­
ters A-F are permitted in numbers (no matter what base is in effect) and 
are interpreted as digits having values 10-15, respectively. These charac­
ters must be uppercase and not lowercase. 

6-6 



be: A Calculator 

The statement: 

ibase = A 

changes you back to decimal input base no matter what the current input 
base is. Negative and large positive input bases are permitted; however 
no mechanism has been provided for the input of arbitrary numbers in 
bases less than 1 and greater than 16. 

obase is used as the base for output numbers. The value of obase is ini­
tially set to a decimal 10. The lines: 

obase = 16 
1000 

produce the output line: 

This is interpreted as a three-digit hexadecimal number. Very large out­
put bases are permitted. For example, large numbers can be output in 
groups of five digits by setting obase to 100000. Even strange output 
bases, such as negative bases, and 1 and 0, are handled correctly. 

Very large numbers are split across lines with seventy characters per line. 
A split line that continues on the next line ends with a backslash (\). 
Decimal output conversion is fast, but output of very large numbers (i.e., 
more than 100 digits) with other bases is rather slow. 

Remember that ibase and obase do not affect the course of internal com­
putation or the evaluation of expressions; they only affect input and out­
put conversion. 

6.3.3 Scaling Quantities 

A special internal quantity called scale is used to determine the scale of 
calculated quantities. Numbers can have up to 99 decimal digits after the 
decimal point. This fractional part is retained in further computations. 
We refer to the number of digits after the decimal point of a number as its 
"scale. " 

6-7 



XENIX User's Guide 

When two scaled numbers are combined by means of one of the arith­
metic operations, the result has a scale determined by the following rules: 

Addition, subtraction 

Multiplication 

Division 

Modulo 

Exponentiation 

Square Root 

The scale of the result is the larger of the scales 
of the two operands. There is never any trunca­
tion of the result. 

The scale of the result is never less than the max­
imum of the two scales of the operands, never 
more than the sum of the scales of the operands, 
and subject to those two restrictions, the scale of 
the result is set equal to the contents of the inter­
nal quantity, scale. 

The scale of a quotient is the contents of the 
internal quantity, scale. 

The scale of a remainder is the sum of the scales 
of the quotient and the divisor. 

The result of an exponentiation is scaled as if the 
implied multiplications were performed. An 
exponent must be an integer. 

The scale of a square root is set to the maximum 
of the scale of the argument and the contents of 
scale. 

All of the internal operations are actually carried out in terms of integers, 
with digits being discarded when necessary. In every case where digits 
are discarded truncation is performed without rounding. 

The contents of scale must be no greater than 99 and no less than O. It is 
initially set to O. 

The internal quantities scale, ibase, and base can be used in expressions 
just like other variables. The line: 

scale = scale + 1 

increases the value of scale by one, and the line: 

scale 

causes the current value of scale to be printed. 

6-8 



be: A Calculator 

The value of scale retains its meaning as a number of decimal digits to be 
retained in internal computation even when ibase or obase are not equal 
to 10. The internal computations (which are still conducted in decimal, 
regardless of the bases) are performed to the specified number of decimal 
digits, never hexadecimal or octal or any other kind of digits. 

6.3.4 Using Functions 

The name of a function is a single lowercase letter. Function names are 
permitted to use the same letters as simple variable names. Twenty-six 
different defined functions are permitted in addition to the twenty-six 
variable names. 

The line: 

define a(x) { 

begins the definition of a function with one argument. This line must be 
followed by one or more statements, which make up the body of the func­
tion, ending with a right brace (}). Return of control from a function 
occurs when a return statement is executed or when the end of the func­
tion is reached. 

The return statement can take either of the two forms: 

return 
return(x) 

In the first case, the returned value of the function is 0; in the second, it is 
the value of the expression in parentheses. 

Variables used in functions can be declared as automatic by a statement 
of the form: 

auto x,y,z 

There can be only one auto statement in a function and it must be the first 
statement in the definition. These automatic variables are allocated space 
and initialized to zero on entry to the function and thrown away on return. 
The values of any variables with the same names outside the function are 
not disturbed. Functions can be called recursively and the automatic vari­
ables at each call level are protected. The parameters named in a func­
tion definition are treated in the same way as the automatic variables of 

6-9 



XENIX User's Guide 

that function, with the single exception that they are given a value on 
entry to the function. An example of a function definition follows: 

define a(x,y){ 
auto z 
z=x*y 
retum(z) 

The value of this function, when called, will be the product of its two 
arguments. 

A function is called by the appearance of its name, followed by a string of 
arguments enclosed in parentheses and separated by commas. The result 
is unpredictable if the wrong number of arguments is used. 

If the function "a" is defined as shown above, then the line: 

a(7,3.14) 

would print the result: r 21.98 

Similarly, the line: 

x = a(a(3,4),5) 

would cause the value of "x" to become 60. 

Functions can require no arguments, but still perform some useful opera­
tion or return a useful result. Such functions are defined and called using 
parentheses with nothing between them. For example: 

bO 

calls the function named b. 

6-10 



bc: A Calculator 

6.3.5 Using Subscripted Variables 

A single lowercase letter variable name followed by an expression in 
brackets is called a subscripted variable and indicates an array element. 
The variable name is the name of the array and the expression in brackets 
is called the subscript. Only one-dimensional arrays are permitted in bc. 
The names of arrays are permitted to collide with the names of simple 
variables and function names. Any fractional part of a subscript is dis­
carded before use. Subscripts must be greater than or equal to zero and 
less than or equal to 2047. 

Subscripted variables can be freely used in expressions, in function calls 
and in return statements. 

An array name can be used as an argument to a function, as in: 

f(a[ ]) 

Array names can also be declared as automatic in a function definition 
with the use of empty brackets: 

define f( a[ ]) 
auto a[ ] 

When an array name is so used, the entire contents of the array are copied 
for the use of the function, then thrown away on exit from the function. 
Array names that refer to whole arrays cannot be used in any other con­
text. 

6.3.6 Using Control Statements: if, while and for 

The if, while, and for statements are used to alter the flow within pro­
grams or to cause iteration. The range of each of these statements is a 
following statement or compound statement consisting of a collection of 
statements enclosed in braces. They are written as follows: 

if ( relation) statement 
while ( relation) statement 
for (expression1 ; relation; expression2 )statement 

6-11 



XENIX User's Guide 

A relation in one of the control statements is an expression of the form: 

expression] rel-op expression2 

where the two expressions are related by one of the six relational opera­
tors: 

< > <= >= != 

Note that a double equal sign (==) stands for "equal to" and an 
exclamation-equal sign (!=) stands for "not equal to". The meaning of 
the remaining relational operators is their normal arithmetic and logical 
meaning. 

Beware of using a single equal sign (=) instead of the double equal sign 
(==) in a relational. Both of these symbols are legal, so you will not get a 
diagnostic message. However, the operation will not perform the intended 
comparison. 

The if statement causes execution of its range if and only if the relation is 
true. Then control passes to the next statement in the sequence. 

The while statement causes repeated execution of its range as long as the 
relation is true. The relation is tested before each execution of its range 
and if the relation is false, control passes to the next statement beyond the 
range of the while statement. 

The for statement begins by executing expression]. Then the relation is 
tested and, if true, the statements in the range of the for statement are 
executed. Then expression2 is executed. The relation is tested, and so on. 
The typical use of the for statement is for a controlled iteration, as in the 
statement: 

for(i=I; k=10; i=i+1) 

which will print the integers from 1 to 10. 

6-12 



be: A Calculator 

The following are some examples of the use of the control statements: 

define fen) { 
auto i, x 
x=1 
for(i=1; k=n; i=i+ 1) x=x*i 
return(x) 

The line: 

f(a) 

prints "a" factorial if "a" is a positive integer. 

The following is the definition of a function that computes values of the 
binomial coefficient ( "m" and "n" are assumed to be positive integers): 

define b(n,m){ 
auto x,j 
x=1 
for(j=1; j<=m; j=j+1) x=x*(n-j+1)/j 
return(x) 

The following function computes values of the exponential function b 
summing the appropriate series without regard to possible truncation 
errors: 

scale = 20 
define e(x){ 

auto a, b, c, d, n 
a=1 
b=1 
c=1 
d=O 
n=1 
while(1==1) 

a=a*x 
b=b*n 
c=c+a/b 
n=n+1 
if(c==d) return(c) 
d=c 

6-13 



XENIX User's Guide 

6.3.7 Using Other Language Features 

Some language features that every user should know about are listed 
below. 

• Normally, statements are entered one to a line. It is also permissi­
ble to enter several statements on a line if they are separated by 
semicolons. 

• If an assignment statement is placed in parentheses, it then has a 
value and can be used anywhere that an expression can. For exam­
pIe, the line: 

(x=y+17) 

not only makes the indicated assignment, but also prints the result­
ing value. 

The following is an example of a use of the value of an assignment 
statement even when it is not placed in parentheses: 

x = a[i=i+l] 

This causes a value to be assigned to "x" and also increments "i" 
before it is used as a subscript. 

• The following constructions work in be in exactly the same 
manner as they do in the C language: 

Construction Equivalent 
x=y=z x =(y=z) 
x=+y x=x+Y 
x=-y x=x-y 
x=* y x=x*y 
x=/y x=x/y 
x=%y x=x%y 
x= " Y x=x"y 
x++ (x=x+ 1)-1 
x-- (x=x-I)+1 
++x x=x+l 
--x x = x-I 

6-14 



be: A Calculator 

Even if you don't intend to use these constructions, if you enter one 
inadvertently, something legal but unexpected may happen. Be 
aware that in some of these constructions spaces are significant. 
There is a real difference between "x=-y" and "x= -y". The first 
replaces "x" by "x-y" and the second by "-y". 

• The comment convention is identical to the C comment conven­
tion. Comments begin with "/*" and end with "*/". 

• There is a library of math functions that can be obtained by enter­
ing: 

be -1 

when you invoke bc. This command loads the library functions 
sine, cosine, arctangent, natural logarithm, exponential, and Bessel 
functions of integer order. These are named "s", "c", "a", "1", 
"e", and "j(n,x)", respectively. This library sets scale to 20 by 
default. 

• If you enter: 

be file •.. 

be will read and execute the named file or files before accepting 
commands from the keyboard. In this way, you can load your own 
programs and function definitions. 

6.4 Language Reference 

This section is a comprehensive reference to the be language. It contains 
a more concise description of the features mentioned in earlier sections. 

6.4.1 Tokens 

Tokens are keywords, identifiers, constants, operators, and separators. 
Token separators can be blanks, tabs or comments. Newline characters or 
semicolons separate statements. 

Comments 

Identifiers 

Comments are introduced by the characters "/*" 
and are terminated by "* /' '. 

There are three kinds of identifiers: ordinary 
identifiers, array identifiers and function 
identifiers. All three types consist of single 

6-15 



XENIX User's Guide 

Keywords 

Constants 

lowercase letters. Array identifiers are followed 
by square brackets, enclosing an optional expres­
sion describing a subscript. Arrays are singly 
dimensioned and can contain up to 2048 elements. 
Indexing begins at 0 so an array can be indexed 
from 0 to 2047. Subscripts are truncated to 
integers. Function identifiers are followed by 
parentheses, enclosing optional arguments. The 
three types of identifiers do not conflict; a pro­
gram can have a variable named "x", an array 
named "x", and a function named "x", all of 
which are separate and distinct. 

The following are reserved keywords: 

ibase if 
obase break 
scale define 
sqrt auto 
length return 
while quit 
for 

Constants are arbitrarily long numbers with an 
optional decimal point. The hexadecimal digits 
A-F are also recognized as digits with decimal 
values 10-15, respectively. 

6.4.2 Expressions 

All expressions can be evaluated to a value. The value of an expression is 
always printed unless the main operator is an assignment. The pre­
cedence of expressions (i.e., the order in which they are evaluated) is as 
follows: 

6-16 

Function calls 
Unary operators 
Multiplicative operators 
Additive operators 
Assignment operators 
Relational operators 



be: A Calculator 

There are several types of expressions: 

Named expressions 
Named expressions are places where values are stored. Sim­
ply stated, named expressions are legal on the left side of an 
assignment. The value of a named expression is the value 
stored in the place named. 

Constants 

identifiers 
Simple identifiers are named expressions. They 
have an initial value of zero. 

array-name [ expression] 
Array elements are named expressions. They have 
an initial value of zero. 

scale, ibase and obase 
The internal registers scale, ibase, and obase are all 
named expressions. Scale is the number of digits 
after the decimal point to be retained in arithmetic 
operations and has an initial value of zero. [base 
and obase are the input and output number radixes 
respectively. Both ibase and obase have initial 
values of 10. 

Constants are primitive expressions that evaluate to them­
selves. 

Parenthetic Expressions 
An expression surrounded by parentheses is a prunltIve 
expression. The parentheses are used to alter normal operator 
precedence. 

Function Calls 
Function calls are expressions that return values. They are 
discussed in section 5.4.3. 

6-17 



XENIX User's Guide 

6.4.3 Function Calls 

A function call consists of a function name followed by parentheses con­
taining a comma-separated list of expressions, which are the function 
arguments. The syntax is as follows: 

function-name ( [expression [ , expression ... ] ] ) 

A whole array passed as an argument is specified by the array name fol­
lowed by empty square brackets. All function arguments are passed by 
value. As a result, changes made to the formal parameters have no effect 
on the actual arguments. If the function terminates by executing a return 
statement, the value of the function is the value of the expression in the 
parentheses of the return statement, or 0 if no expression is provided or if 
there is no return statement. Three built-in functions are listed below: 

sqrt (expr) 

length ( expr ) 

scale ( expr ) 

The result is the square root of the expression and 
is truncated in the least significant decimal place. 
The scale of the result is the scale of the expres­
sion or the value of scale, whichever is larger. 

The result is the total number of significant 
decimal digits in the expression. The scale of the 
result is zero. 

The result is the scale of the expression. The 
scale of the result is zero. 

6.4.4 Unary Operators 

The unary operators bind right to left. 

6-18 

- expr The result is the negative of the expression. 

+ + named _ expr The named expression is incremented by one. The 
result is the value of the named expression after 
incrementing. 

-- named _ expr The named expression is decremented by one. 
The result is the value of the named expression 
after decrementing. 



bc: A Calculator 

named _ expr + + The named expression is incremented by one. The 
result is the value of the named expression before 
incrementing. 

named _ expr - - The named expression is decremented by one. 
The result is the value of the named expression 
before decrementing. 

6.4.5 Multiplicative Operators 

The multiplicative operators (*, /, and %) bind from left to right. 

expr*expr 

expr/expr 

expr%expr 

expr"'expr 

The result is the product of the two expressions. If 
, 'a" and "b" are the scales of the two expres­
sions, then the scale of the result is: 

min ( a+b, max ( scale, a, b ) ) 

The result is the quotient of the two expressions. 
The scale of the result is the value of scale. 

The modulo operator (%) produces the remainder 
of the division of the two expressions. More pre­
cisely, a%b is a-a/b*b. The scale of the result is 
the sum of the scale of the divisor and the value of 
scale. 

The exponentiation operator binds right to left. 
The result is the first expression raised to the 
power of the second expression. The second 
expression must be an integer. If" a" is the scale 
of the left expression and "b" is the absolute 
value of the right expression, then the scale of the 
result is: 

min ( a*b, max ( scale, a) ) 

6-19 



XENIX User's Guide 

6.4.6 Additive Operators 

The additive operators bind left to right. 

expr+expr 

expr-expr 

The result is the sum of the two expressions. The 
scale of the result is the maximum of the scales of 
the expressions. 

The result is the difference of the two expressions. 
The scale of the result is the maximum of the 
scales of the expressions. 

6.4.7 Assignment Operators 

The assignment operators listed below assign values to the named expres­
sion on the left side. 

6-20 

nalned expr=expr 
- This expression results in assigning the value of the 

expression on the right to the named expression on the 
left. 

nalned _ expr= +expr 
The result of this expression is equivalent to 
nalned _ expr=nalned _ expr+expr. 

nalned _ expr= -expr 
The result of this expression is equivalent to 
named _ expr=named _ expr-expr. 

named _ expr=*expr 
The result of this expression is equivalent to 
named _ expr=named _ expr*expr. 

named _ expr=1 expr 
The result of this expression is equivalent to 
named _ expr=named _ exprl expr. 

named _ expr= %expr 
The result of this expression is equivalent to 
named _expr=named _ expr%expr. 

nalned _ expr= expr 
The result of this expression is equivalent to 
named _ expr=named _ exprAexpr. 



be: A Calculator 

6.4.8 Relational Operators 

Unlike all other operators, the relational operators are only valid as the 
object of an if or while statement, or inside a for statement. 

These operators are listed below: 

expr<expr 

expr>expr 

expr<=expr 

expr>=expr 

expr==expr 

expr!= expr 

6.4.9 Storage Classes 

There are only two storage classes in be: global and automatic (local). 
Only identifiers that are to be local to a function need to be declared with 
the auto command. The arguments to a function are local to the function. 
All other identifiers are assumed to be global and available to all func­
tions. 

All identifiers, global and local, have initial values of zero. Identifiers 
declared as auto are allocated on entry to the function and released on 
returning from the function. They, therefore, do not retain values 
between function calls. Note that auto arrays are specified by the array 
namer, followed by empty square brackets. 

Automatic variables in be do not work the same way as in C. On entry to 
a function, the old values of the names that appear as parameters and as 
automatic variables are pushed onto a stack. Until return is made from the 
function, reference to these names refers only to the new values. 

6-21 



XENIX User's Guide 

6.4.10 Statements 

Statements must be separated by a semicolon or a newline. Except where 
altered by control statements, execution is sequential. There are four 
types of statements: expression statements, compound statements, quoted 
string statements, and built-in statements. Each kind of statement is dis­
cussed below: 

6-22 

Expression statements 
When a statement is an expression, unless the 
main operator is an assignment, the value of the 
expression is printed, followed by a newline char­
acter. 

Compound statements 
Statements can be grouped together and used 
when one statement is expected by surrounding 
them with curly braces ( { and }). 

Quoted string statements 
For example: 

"string" 

prints the string inside the quotation marks. 

Built-in statements 
Built-in statements include auto, break, define, 
for, if, quit, return, and while. 

The syntax for each built-in statement is given 
below: 

Auto statement 

The auto statement causes the values of the 
identifiers to be pushed down. The identifiers can 
be ordinary identifiers or array identifiers. Array 
identifiers are specified by following the array 
name by empty square brackets. The auto state­
ment must be the first statement in a function 
definition. Syntax of the auto statement is: 

auto identifier [, identifier] 



be: A Calculator 

Break statement 

The break statement causes termination of a for 
or while statement. Syntax for the break statement 
is: 

break 

Define statement 

The define statement defines a function; parame­
ters to the function can be ordinary identifiers or 
array names. Array names must be followed by 
empty square brackets. The syntax of the define 
statement is: 

define ([parameter [ , parameter ... ]]) {statements} 

For statement 

The for statement is the same as: 

first-expression 
while (relation) { 

statement 
last-expression 

All three expressions must be present. Syntax of 
the for statement is: 

for (expression; relation;expression) statement 

If statement 

The statement is executed if the relation is true. 
The syntax is as follows: 

if (relation) statement 

Quit statement 

The quit statement stops execution of a be pro­
gram and returns control to XENIX when it is first 
encountered. Because it is not treated as an exe­
cutable statement, it cannot be used in a function 
definition or in an if, for, or while statement. 

6-23 



XENIX User's Guide 

6-24 

Note that entering a Ctrl-d at the keyboard is the 
same as entering "quit". The syntax of the quit 
statement is as follows: 

quit 

Return statement 

The return statement terminates a function, pops 
its auto variables off the stack, and specifies the 
result of the function. The result of the function is 
the result of the expression in parentheses. The 
first form is equivalent to "return(O)". The syntax 
of the return statement is as follows: 

return(expr) 

While statement 

The statement is executed while the relation is 
true. The test occurs before each execution of the 
statement. The syntax of the while statement is as 
follows: 

while (relation) statement 



Chapter 7 

The Shell 

7.1 Introduction 7 -1 

7.2 Basic Concepts 7-2 

7.3 

7.4 

7.5 

7.6 

7.7 

7.2.1 How Shells Are Created 7 -2 
7.2.2 Commands 7-2 
7.2.3 How the Shell Finds Commands 7-3 
7.2.4 Generation of Argument Lists 7 -3 
7.2.5 Quoting Mechanisms 7-4 
7.2.6 Standard Input and Output 7-6 
7.2.7 Diagnostic and Other Outputs 7 -7 
7.2.8 Command Lines and Pipelines 7-7 
7.2.9 Command Substitution 7-9 

Shell Variables 7-10 
7.3.1 Positional Parameters 7-11 
7.3.2 User-Defined Variables 7-11 
7.3.3 Predefined Special Variables 7-16 

The Shell State 7-17 
7.4.1 Changing Directories 7-17 
7.4.2 The .profile File 7-18 
7.4.3 Execution Flags 7-18 

A Command's Environment 7-19 

Invoking the Shell 7-20 

Passing Arguments to Shell Procedures 7-21 

7.8 Controlling the Flow of Control 7-23 
7.8.1 Using the if Statement 7-25 
7.8.2 Using the case Statement 7-27 
7.8.3 Conditional Looping: while and until 7-28 
7.8.4 Looping Over a List: for 7-28 
7.8.5 LoopControl: break and continue 7-30 
7.8.6 End-of-Fileandexit 7-31 



7.8.7 Command Grouping: Parentheses and Braces 7-31 
7.8.8 Defining Functions 7-33 
7.8.9 Input/Output Redirection and Control Commands 7-34 
7.8.10 Transfer Between Files: The Dot (.)Command 7-34 
7.8.11 InterruptHandling: trap 7-35 

7.9 Special Shell Commands 7-38 

7.10 Creation and Organization of Shell Procedures 7 -41 

7.11 More About Execution Flags 7 -43 

7.12 SupportingCommandsandFeatures 7-43 
7.12.1 Conditional Evaluation: test 7-44 
7.12.2 Echoing Arguments 7 -45 
7.12.3 Expression Evaluation: expr 7-46 
7.12.4 TrueandFalse 7-47 
7.12.5 In-Line Input Documents 7 -47 
7.12.6 Input/ Output Redirection Using File Descriptors 7-48 
7.12.7 Conditional Substitution 7-49 
7.12.8 Invocation Flags 7-50 

7.13 Effective and Efficient Shell Programming 7-51 
7.13.1 Number of Processes Generated 7-51 
7.13.2 Number of Data Bytes Accessed 7-53 
7.13.3 Shortening Directory Searches 7 -54 
7.13.4 Directory-Search Order and the PATH Variable 7-54 
7.13.5 Good Ways to Set Up Directories 7-55 

7.14 Shell Procedure Examples 7-55 

7.15 Shell Grammar 7-64 



7.1 Introduction 

When users log into XENIX, they communicate with one of serveral inter­
preters. This chapter discusses the shell command interpreter, sh. This 
interpreter is a XENIX program that supports a very powerful command 
language. Each invocation of this interpreter is called a shell; and each 
shell has one function: to read and execute commands from its standard 
input. 

Because the shell gives the user a high-level language in which to com­
municate with the operating system, XENIX can perfonn tasks unheard of 
in less sophisticated operating systems. Commands that would nonnally 
have to be written in a traditional programming language can be written 
with just a few lines in a shell procedure. In other operating systems, 
commands are executed in strict sequence. With XENIX and the shell, 
commands can be: 

• Combined to form new commands 

• Passed positional parameters 

• Added or renamed by the user 

• Executed within loops or executed conditionally 

• Created for local execution without fear of name conflict with 
other user commands 

• Executed in the background without interrupting a session at a ter­
minal 

Furthennore, commands can "redirect" command input from one source 
to another and redirect command output to a file, terminal, printer, or to 
another command. This provides flexibility in tailoring a task for a par­
ticular purpose. 

7-1 



XENIX User's Guide 

7.2 Basic Concepts 

The shell itself (that is, the program that reads your commands when you 
log in or that is invoked with the sh command) is a program written in the 
C language; it is not part of the operating system proper, but an ordinary 
user program. 

7.2.1 How Shells Are Created 

In XENIX, a process is an executing entity complete with instructions, 
data, input, and output. All processes have lives of their own, and may 
even start (or "fork") new processes. Thus, at any given moment several 
processes may be executing, some of which are "children" of other 
processes. 

Users log into the operating system and are assigned a "shell" from 
which they execute. This shell is a personal copy of the shell command 
interpreter that is reading commands from the keyboard: in this context, 
the shell is simply another process. 

In the XENIX multitasking environment, files may be created in one phase 
and then sent off to be processed in the "background." This allows the 
user to continue working while programs are running. 

7.2.2 Commands 

The most common way of using the shell is by entering simple commands 
at your keyboard. A simple command is any sequence of arguments 
separated by spaces or tabs. The first argument (numbered zero) specifies 
the name of the command to be executed. Any remaining arguments, 
with a few exceptions, are passed as arguments to that command. For 
example, the following command line might be entered to request print­
ing of the files allan, barry, and calvin: 

lpr allan barry calvin 

If the first argument of a command names a file that is executable (as 
indicated by an appropriate set of permission bits associated with that 
file) and is actually a compiled program, the shell, as parent, creates a 
child process that immediately executes that program. If the file is 
marked as being executable, but is not a compiled program, it is assumed 
to be a shell procedure, that is, a file of ordinary text containing shell 
command lines. In this case, the shell spawns another instance of itself (a 
subs hell) to read the file and execute the commands inside it. 

7-2 



The Shell 

From the user's viewpoint, compiled programs and shell procedures are 
invoked in exactly the same way. The shell detennines which implemen­
tation has been used, rather than requiring the user to do so. This pro­
vides unifonnity of invocation. 

7.2.3 How the Shell Finds Commands 

The shell nonnally searches for commands in three distinct locations in 
the file system. The shell attempts to use the command name as given; if 
this fails, it prepends the string /bin to the name. If the latter is unsuc­
cessful, it prepends /usr/bin to the command name. The effect is to 
search, in order, the current directory, then the directory /bin, and finally, 
/usr/bin. For example, the pr and man commands are actually the files 
/bin/pr and /usr/bin/man, respectively. A more complex pathname may 
be given, either to locate a file relative to the user's current directory, or 
to access a command with an absolute pathname. If a given command 
name includes a slash (/) (for example, /bin/sort dir/cmd), the prepending 
is not performed. Instead, a single attempt is made to execute the com­
mand as named. 

This mechanism gives the user a convenient way to execute public com­
mands and commands in or near the current directory, as well as the abil­
ity to execute any accessible command, regardless of its location in the 
file structure. Because the current directory is usually searched first, any­
one can possess a private version of a public command without affecting 
other users. Similarly, the creation of a new public command does not 
affect a user who already has a private command with the same name. 
The particular sequence of directories searched may be changed by reset­
ting the shell PATH variable. (Shell variables are discussed later in this 
chapter.) 

7.2.4 Generation of Argument Lists 

The arguments to commands are very often filenames. Sometimes, these 
filenames have similar, but not identical, names. To take advantage of 
this similarity in names, the shell lets the user specify patterns that match 
the filenames in a directory. If a pattern is matched by one or more 
filenames in a directory, then those filenames are automatically generated 
by the shell as arguments to the command. 

Most characters in such a pattern match themselves, but there are also 
XENIX special characters that may be included in a pattern. These spe­
cial characters are: the star (*), which matches any string, including the 
null string; the question mark (?), which matches anyone character; and 
any sequence of characters enclosed within brackets ([ and D, which 

7-3 



XENIX User's Guide 

matches anyone of the enclosed characters. Inside brackets, a pair of 
characters separated by a dash (-) matches any character within the range 
of that pair. Thus [a-de] is equivalent to [abcde]. 

Examples of metacharacter usage: 

Metacharacter 

* 
*temp* 
[a-f1* 
*.c 
lusr/binl? 

Meaning 

Matches all names in the current directory 
Matches all names containing "temp" 

Matches all single-character names in /usr/bin 

This pattern-matching capability saves typing and, more importantly, 
makes it possible to organize information in large collections of files that 
are named in a structured fashion, using common characters or extensions 
to identify related files. 

Pattern matching has some restrictions. If the first character of a filename 
is a period (.), it can be matched only by an argument that literally begins 
with a period. If a pattern does not match any filenames, then the pattern 
itself is the result of the match. 

Note that directory names should not contain any of the following charac­
ters: 

* ? [ ] 

If these characters are used, then infinite recursion may occur during pat­
tern matching attempts. 

7.2.5 Quoting Mechanisms 

Several characters, including <,>, *,? ,[ and], have special meanings to the 
shell. To remove the special meaning of these characters requires some 
form of quoting. This is done by using single quotation marks C) or dou­
ble quotation marks (") to surround a string. A backslash (\) before a sin­
gle character provides this function. (Back quotation marks C) are used 
only for command substitution in the shell and do not hide the special 
meanings of any characters.) 

7-4 



The Shell 

All characters within single quotation marks are taken literally. Thus: 

echostuff=~echo $? $*; Is * I wc~ 

results in the string: 

echo $? $*; Is * I wc 

being assigned to the variable echostuff, but it does not result in any other 
commands being executed. 

Within double quotation marks, the special meaning of certain characters 
does persist, while all other characters are taken literally. The characters 
that retain their special meaning are the dollar sign ($), the backslash (\), 
the back quotation mark ('), and the double quotation mark (") itself. 
Thus, within double quotation marks, variables are expanded and com­
mand substitution takes place (both topics are discussed in later sections). 
However, any commands in a command substitution are unaffected by 
double quotation marks, so that characters such as star (*) retain their spe­
cial meaning. 

To hide the special meaning of the dollar sign ($) and single and double 
quotation marks within double quotation marks, precede these characters 
with a backslash (\). Outside of double quotation marks, preceding a 
character with a backslash is equivalent to placing single quotation marks 
around that character. A backslash (\) followed by a newline causes that 
newline to be ignored. The backslash-newline pair is therefore useful in 
allowing continuation of long command lines. 

Some examples of quoting are displayed below: 

Input Shell interprets as: 
~ , ~ The back quotation mark (') 
" I, '" The double quotation mark (") 
~, 

echo one ' ~ the one word '" echo one' " 
"\" " The double quotation mark (") 
"'echo one' " the one word "one" 
II '- " illegal (expects another ' ) 
one two the two words "one" & "two" 
"one two" the one word "one two" 
~ one two ~ the one word "one two" 
one * two ~ the one word "one * two" 

"one * two" the one word "one * two" 
, 
echo one 

, 
the one word "one" 

7-5 



XENIX User's Guide 

7.2.6 Standard Input and Output 

In general, most commands do not know or care whether their input or output 
is coming from or going to a terminal or a file. Thus, a command can be used 
conveniently either at a terminal or in a pipeline. A few commands vary their 
actions depending on the nature of their input or output, either for efficiency, 
or to avoid useless actions (such as attempting random access I/O on a termi­
nal or a pipe). 

When a command begins execution, it usually expects that three files are 
already open: a "standard input" ,a "standard output" ,and a "diagnostic 
output' ' (also called "standard error" ). A number called afile descriptor is 
associated with each of these files. By convention, file descriptor 0 is associ­
ated with the standard input, file descriptor I with the standard output, and 
file descriptor 2 with the diagnostic output. A child process normally inher­
its these files from its parent; all three files are initially connected to the ter­
minal (0 to the keyboard, I and 2 to the terminal screen). The shell permits 
the files to be redirected elsewhere before control is passed to an invoked 
command. 

An argument to the shell of the form' '<file" or' '>file" opens the specified 
file as the standard input or output (in the case of output, destroying the previ-
0us contents of file, if any). An argument of the form' '»file" directs the 
standard output to the end offile, thus providing a way to append data to the 
file without destroying its existing contents. In either of the two output cases, 
the shell creates file if it does not already exist. Thus: 

> output 

alone on a line creates a zero-length file. The following appends to file log 
the list of users who are currently logged on: 

who » log 

Such redirection arguments are only subject to variable and command sub­
stitution; neither blank interpretation nor pattern matching of filenames 
occurs after these substitutions. This means that: 

echo /this is a test / > * .gal 

produces a one-line file named *.gal. Similarly, an error message is pro­
duced by the following command, unless you have a file with the name' '?' , : 

cat < ? 

7-6 



The Shell 

Special characters are not expanded in redirection arguments because 
redirection arguments are scanned by the shell before pattern recognition 
and expansion takes place. 

7.2.7 Diagnostic and Other Outputs 

Diagnostic output from XENIX commands is normally directed to the file 
associated with file descriptor 2. (There is often a need for an error output file 
that is different from standard output so that error messages do not get lost 
down pipelines.) You can redirect this error output to a file by immediately 
prep ending the number of the file descriptor (2 in this case) to either output 
redirection symbol (> or »). The following line appends error messages 
from the cc command to the file named ERRORS: 

cc testfile.c 2» ERRORS 

Note that the file descriptor number must be prepended to the redirection 
symbol without any intervening spaces or tabs; otherwise, the number will 
be passed as an argument to the command. 

This method may be generalized to allow redirection of output associated 
with any of the first ten file descriptors (numbered 0-9). For instance, if cmd 
puts output on file descriptor 9, then the following line will direct that output 
to the file savedata: 

cmd 9> savedata 

A command often generates standard output and error output, and might 
even have some other output, perhaps a data file. In this case, one can 
redirect independently all the different outputs. Suppose, for example, that 
cmd directs its standard output to file descriptor 1, its error output to file 
descriptor 2, and builds a data file on file descriptor 9. The following would 
direct each of these three outputs to a different file: 

cmd >standard 2> error 9> data 

7.2.8 Command Lines and Pipelines 

A sequence of commands separated by the vertical bar ( I ) makes up a pipe­
line. In a pipeline consisting of more than one command, each command is 
run as a separate process connected to its neighbors by pipes, that is, the out­
put of each command (except the last one) becomes the input of the next 
command in line. 

7-7 



XENIX User's Guide 

Aftlter is a command that reads its standard input, transforms it in some way, 
then writes it as its standard output. A pipeline normally consists of a series 
of filters. Although the processes in a pipeline are permitted to execute in 
parallel, each program needs to read the output of its predecessor. Many 
commands operate on individual lines of text, reading a line, processing it, 
writing it out, and looping back for more input. Some must read large 
amounts of data before producing output; sort is an example of the extreme 
case that requires all input to be read before any output is produced. The fol­
lowing is an example of a typical pipeline: 

nroff -mm text I coli lpr 

nroff is a text formatter available in the XENIX Text Processing System 
whose output may contain reverse line motions, col converts these motions 
to a form that can be printed on a terminal lacking reverse-motion capability, 
and lpr does the actual printing. The flag -mm indicates one of the com­
monly used formatting options, and text is the name of the file to be format­
ted. 

The following examples illustrate the variety of effects that can be obtained 
by combining a few commands in the ways described above. It may be help­
ful to try these at a terminal: 

• who 
Prints the list oflogged-in users on the terminal screen. 

• who»log 
Appends the list oflogged-in users to the end of file log. 

• who I we-I 
Prints the number of logged-in users. (The argument to we is pro­
nounced "minus ell".) 

• who I pr 
Prints a paginated list oflogged-in users. 

• who I sort 
Prints an alphabetized list oflogged-in users. 

• who I grep bob 
Prints the list oflogged-in users whose login names contain the string 
bob. 

• who I grep bob I sort I pr 

7-8 

Prints an alphabetized, paginated list of logged-in users whose login 
names contain the string bob. 



The Shell 

• {date;who I we-I; } » log 
Appends (to file log) the current date followed by the count of 
logged-in users. Be sure to place a space after the left brace and a 
semicolon before the right brace. 

• who I sed -e 'sf .*//' I sort I uniq -d 
Prints only the login names of all users who are logged in more than 
once. Note the use of sed as a filter to remove characters trailing the 
login name from each line. (The ". *" in the sed command is pre­
ceded by a space.) 

The who command does not by itself provide options to yield all these 
results-they are obtained by combining who with other commands. Note 
that who just serves as the data source in these examples. As an exercise, 
replace "who I" with "</etc/passwd" in the above examples to see how a 
file can be used as a data source in the same way. Notice that redirection 
arguments may appear anywhere on the command line, even at the start. 
This means that: 

< infile >outfile sort I pr 

is the same as: 

sort < infile I pr > outfile 

7.2.9 Command Substitution 

Any command line can be placed within back quotation marks C ... ') so that 
the output of the command replaces the quoted command line itself. This 
concept is known as command substitution. The command or commands 
enclosed between back quotation marks are first executed by the shell and 
then their output replaces the whole expression, back quotation marks and 
all. This feature is often used to assign to shell variables. (Shell variables are 
described in the next section.) 

For example: 

today= 'date' 

7-9 



XENIX User's Guide 

assigns the string representing the current date to the variable "today"; for 
example "Tue Nov 2616:01:09 E;ST 1985". The following command saves 
the numberoflogged-in users in the shell variable users: 

users= 'who I wc -1' 

Any command that writes to the standard output can be enclosed in back quo­
tation marks. Back quotation marks may be nested, but the inside sets must 
be escaped with backslashes (\). Forexample: 

logmsg='echo Your login directory is \'pwd\" 

will display the line" your login directory is name of login directory' '. Shell 
variables can also be given values indirectly by using the read and line com­
mands. The read command takes a line from the standard input (usually your 
terminal) and assigns consecutive words on that line to any variables named. 

For example: 

read first init last 

takes an input line of the form: 

G. A. Snyder 

and has the same effect as entering: 

first=G. init=A. last=Snyder 

The read command assigns any excess' 'words" to the last variable. 

The line command reads a line of input from the standard input and then 
echoes it to the standard output. 

7.3 Shell Variables 

The shell has several mechanisms for creating variables. A variable is a 
name representing a string value. Certain variables are referred to as posi­
tional parameters; these are the variables that are normally set only on the 
command line. Other shell variables are simply names to which the user or 
the shell itself may assign string values. 

7-10 



The Shell 

7.3.1 Positional Parameters 

When a shell procedure is invoked, the shell implicitly creates positional 
parameters. The name of the shell procedure itself in position zero on the 
command line is assigned to the positional parameter $0. The first command 
argument is called $1, and so on. The shift command may be used to access 
arguments in positions numbered higher than nine. For example, the follow­
ing shell script might be used to cycle through command line switches and 
then process all succeeding files: 

while test -n "$1" 

done 

do case $1 in 
-a) A=aoption ; shift ;; 
-b) B=boption ; shift ;; 
-c) C=coption ; shift ;; 

-*) echo "bad option" ; exit 1 ;; 
*) process rest of files 
esac 

One can explicitly force values into these positional parameters by using the 
set command. Forexample: 

set abc def ghi 

assigns the string "abc" to the first positional parameter, $1, the string 
, 'def' ' to $2, and the string "ghi" to $3. Note that $0 may not be assigned a 
value in this way-it always refers to the name of the shell procedure; or in 
the login shell, to the name of the shell. 

7.3.2 User-Defined Variables 

The shell also recognizes alphanumeric variables to which string values may 
be assigned. A simple assignment has the syntax: 

name=string 

Thereafter, $name will yield the value string. A name is a sequence of 
letters, digits, and underscores that begins with a letter or an underscore. No 
spaces surround the equal sign (=) in an assignment statement. Note that 
positional parameters may not appear on the left side of an assignment state­
ment; they can only be set as described in the previous section. 

More than one assignment may appear in an assignment statement, but 
beware: the shell performs the assignments from right to left. Thus, the 

7-11 



XENIX User's Guide 

following command line results in the variable "A" acquiring the value 
"abc": 

A=$B B=abc 

The following are examples of simple assignments. Double quotation marks 
around the right-hand side allow spaces, tabs, semicolons, andnewlines to be 
included in a string, while also allowing variable substitution (also known as 
"parameter substitution' ') to occur. This means that references to positional 
parameters and other variable names that are prefixed by a dollar sign ($) are 
replaced by the corresponding values, if any. Single quotation marks inhibit 
variable substitution: 

MAIL=/usr/mail/ gas 
echovar="echo $1 $2 $3 $4" 
stars=***** 
asterisks= '$stars ' 

In the above example, the variable echovar has as its value the string consist­
ing of the values of the first four positional parameters, separated by spaces, 
plus the string "echo". No quotation marks are needed around the string of 
asterisks being assigned to stars because pattern matching (expansion of 
star, the question mark, and brackets) does not apply in this context. Note 
that the value of $asterisks is the literal string "$stars", not the string 
"*****", because the single quotation marks inhibit substitution. 
In assignments, spaces are not re-interpreted after variable substitution, so 
that the following example results in $first and $second having the same 
value: 

first=' a string with embedded spaces' 
second=$ first 

In accessing the values of variables, you may enclose the variable name in 
braces { ... } to delimit the variable name from any following string. In partic­
ular, if the character immediately following the name is a letter, digit, or 
underscore, then the braces are required. For example, examine the follow­
inginput: 

a=' This is a string' 
echo "${a}ent test of variables." 

7-12 



The Shell 

Here, the echo command prints: 

This is a stringent test of variables. 

If no braces were used, the shell would substitute a null value for "$aent' , 
and print: r test of variables. 

The following variables are maintained by the shell. Some of them are set by 
the shell, and all of them can be reset by the user: 

HOME 

IPS 

MAIL 

Initialized by the login program to the name of the 
user's login directory, that is, the directory that 
becomes the current directory upon completion of a 
login; cd without arguments switches to the 
$HOME directory. Using this variable helps keep 
full pathnames out of shell procedures. This is of 
great benefit when pathnames are changed, either to 
balance disk loads or to reflect administrative 
changes. 

The variable that specifies which characters are 
internal field separators. These are the characters 
the shell uses during blank interpretation. (If you 
want to parse some delimiter-separated data easily, 
you can set IPS to include that delimiter.) The shell 
initially sets IPS to include the blank, tab, and new­
line characters. 

The pathname of a file where your mail is deposited. 
If MAIL is set, then the shell checks to see if any­
thing has been added to the file it names and 
announces the arrival of new mail each time you 
return to command level (e.g., by leaving the editor). 
MAIL is not set automatically; if desired, it should 
be set (and optionally "exported") in the user's 

7-13 



XENIX User's Guide 

7-14 

.pwfile. (The export command and .profile file are 
discussed later in this chapter.) (The presence of 
mail in the standard mail file is also announced at 
login, regardless of whether MAlLis set.) 

MAILCHECK This parameter specifies how often (in seconds) the 
shell will check for the arrival of mail in 
the files specified by the MAILPATH or MAIL 
parameters. The default value is 600 seconds (l0 
minutes). If set to 0, the shell will check before each 
prompt. 

MAILPATH A colon (:) separated list of file names. If this param­
eter is set, the shell informs the user of the arrival of 
mail in any of the specified files. Each file name can 
be followed by % and a message that will be printed 
when the modification time changes. The default 
message is you have mail. 

SHACCT If this parameter is set to the name of a file writable 
by the user, the shell will write an accounting record 
in the file for each shell procedure executed. 
Accounting routines such as acctcom(ADM) and 
accton(ADM) can be used to analyze the data col­
lected. 

SHELL When the shell is invoked, it scans the environment 
for this name. If it is found and there is an 'r' in the 
file name part of its value, the shell becomes a res­
tricted shell. 

PATH The variable that specifies the search path used by 
the shell in finding commands. Its value is an 
ordered list of directory pathnames separated by 
colons. The shell initializes PATH to the list 
:/ bin:/ usr/ bin where a null argument appears in front 
of the first colon. A null anywhere in the path list 
represents the current directory. On some systems, a 
search of the current directory is not the default and 
the PATH variable is initialized instead to 
/bin:/usr/bin. If you wish to search your current 
directory last, rather than first, use: 

PATH=/bin:/usr/bin: 

Below, the two colons together represent a colon 
followed by a null, followed by a colon, thus naming 



CDPATH 

PSI 

PS2 

The Shell 

the current directory. You could possess a personal 
directory of commands (say, $HOME/bin) and 
cause it to be searched before the other three direc­
tories by using: 

PATH=$HOME/bin: :/bin:/usr/bin 

"PATH" is normally set in your .profile file. 

This variable defines the search path for the direc­
tory containing argo Alternative directory names 
are separated by a colon (:). The default path is 
<null> (specifying the current directory). The 
current directory is specified by a null path name, 
which can appear immediately after the equal sign 
or between the colon delimiters anywhere else in the 
path list. If arg begins with a / then the search path is 
not used. Otherwise, each directory in the path is 
searched for argo 

The variable that specifies what string is to be used 
as the primary prompt string. If the shell is interac­
tive, it prompts with the value of PS I when it 
expects input. The default value of PSI is "$ "(a 
dollar sign ($) followed by a blank). 

The variable that specifies the secondary prompt 
string. If the shell expects more input when it 
encounters a newline in its input, it prompts with the 
value of PS2. The default value for this variable is 
"> "(agreater-than symbol followed by a space). 

In general, you should be sure to export all of the above variables so that their 
values are passed to all shells created from your login. Use export at the end 
of your .profile file. An example of an export statement follows: 

export HOME IPS MAIL PATH PS I PS2 

7-15 



XENIX User's Guide 

7.3.3 Predefined Special Variables 

Several variables have special meanings; the following are set only by the 
shell: 

7-16 

$# Records the number of arguments passed to the shell, not 
counting the name of the shell procedure itself. For 
instance, $# yields the number of the highest set positional 
parameter. Thus: 

sh cmd abc 

automatically sets $# to 3. One of its primary uses is in 
checking for the presence of the required number of argu­
ments: 

if test $# -It 2 
then 

echo ~two or more args required~; exit 
fi 

$? Contains the exit status of the last command executed (also 
referred to as "return code", "exit code", or "value"). Its 
value is a decimal string. Most XENIX commands return 
zero to indicate successful completion. The shell itself 
returns the current value of$? as its exit status. 

$$ The process number of the current process. Because process 
numbers are unique among all existing processes, this string 
is often used to generate unique names for temporary files. 
XENIX provides no mechanism for the automatic creation 
and deletion of temporary files; a file exists until it is expli­
citly removed. Temporary files are generally undesirable 
objects; the XENIX pipe mechanism is far superior for many 
applications. However, the need for uniquely-named tem­
porary files does occasionally occur. 

The following example illustrates the recommended prac­
tice of creating temporary files; note that the directories Iusr 
and lusrl tmp are cleared out if the system is rebooted. 



The Shell 

# use current process id 
# to form unique temp file 
temp=/usr/tmp/$ $ 
Is > $temp 
# commands here, some of which use $temp 
rm -F $temp 
# clean up at end 

$! The process number of the last process run in the back­
ground (using the ampersand (&)). This is a string contain­
ing from one to five digits. 

$- A string consisting of names of execution flags currently 
turned on in the shell. For example, $- might have the value 
, 'xv' , if you are tracing your output. 

7.4 The Shell State 

The state of a given instance of the shell includes the values of positional 
parameters, user-defined variables, environment variables, modes of execu­
tion, and the current working directory. 

The state of a shell may be altered in various ways. These include changing 
the working directory with the cd command, setting several flags, and by 
reading commands from the special file, .profile, in your login directory. 

7 .4.1 Changing Directories 

The cd command changes the current directory to the one specified as its 
argument. This can and should be used to change to a convenient place in the 
directory structure. Note that cd is often placed within parentheses to cause 
a subshell to change to a different directory and execute some commands 
without affecting the original shell. 

For example, the first sequence below copies the file /etc/passwd to 
/usr/you/passwd; the second example first changes directory to fete and then 
copies the file: 

cp /etc/passwd /usr/you/passwd 
(cd /etc; cp passwd /usr/you/passwd) 

Note the use of parentheses. Both command lines have the same effect. 

If the shell is reading its commands from a terminal, and the specified direc­
tory does not exist (or some component cannot be searched), spelling 

7-17 



XENIX User's Guide 

correction is applied to each component of directory, in a search for the 
"correct' 'name. The shell then asks whether or not to try and change direc­
tory to the corrected directory name; an answer of n means "no", and any­
thing else is taken as "yes." 

7 .4.2 The .profile File 

The file named .profile is read each time you log in to XENIX. It is normally 
used to execute special one-time-only commands and to set and export vari­
abIes to all later shells. Only after commands are read and executed from 
.profile, does the shell read commands from the standard input-usually the 
terminal. 

7.4.3 Execution Flags 

The set command lets you alter the behavior of the shell by setting certain 
shell flags. In particular, the -x and -v flags may be useful when invoking the 
shell as a command from the terminal. The flags -x and -v may be set by 
entering: 

set -xv 

The same flags may be turned offby entering: 

set +xv 

These two flags have the following meaning: 

-v Input lines are printed as they are read by the shell. This flag 
is particularly useful for isolating syntax errors. The com­
mands on each input line are executed after that input line is 
printed. 

-x Commands and their arguments are printed as they are exe­
cuted. (Shell control commands, such as for, while, etc., are 
not printed, however.) Note that -x causes a trace of only 
those commands that are actually executed, whereas -v 
prints each line of input until a syntax error is detected. 

The set command is also used to set these and other flags within shell pro­
cedures. 

7-18 



The Shell 

7.5 A Command's Environment 

All variables and their associated values that are known to a command at the 
beginning of its execution make up its environment. This environment 
includes variables that the command inherits from its parent process and 
variables specified as keyword parameters on the command line that invokes 
the command. 

The variables that a shell passes to its child processes are those that have 
been named as arguments to the export command. The export command 
places the named variables in the environments of both the shell and all its 
future child processes. 

Keyword parameters are variable-value pairs that appear in the form of 
assignments, normally before the procedure name on a command line. Such 
variables are placed in the environment of the procedure being invoked. For 
example: 

# keycommand 
echo $a $b 

This is a simple procedure that echoes the values of two variables. If it is 
invoked as: 

a=key 1 b=key2 keycommand 

then the resulting output is: 

key1 key2 

Keyword parameters are not counted as arguments to the procedure and do 
not affect $#. 

A procedure may access the value of any variable in its environment. How­
ever, if changes are made to the value of a variable, these changes are not 
reflected in the environment; they are local to the procedure in question. In 
order for these changes to be placed in the environment that the procedure 
passes to its child processes, the variable must be named as an argument to 
the export command within that procedure. To obtain a list of variables that 
have been made exportable from the current shell, enter: 

export 

7-19 



XENIX User's Guide 

You will also get a list of variables that hav; been made read only . To get a 
list of name-value pairs in the current environment, enter either: 

printenv 

or 

env 

7.6 Invoking the Shell 

The shell is a command and may be invoked in the same way as any other 
command: 

sh proc [arg ... ] 

sh -v proc [arg ... ] 

proc [arg ... ] 

7-20 

Anew instance of the shell is explicitly 
invoked to read proc. Arguments, if 
any, can be manipulated. 

This is equivalent to putting" set -v" at 
the beginning of proc. It can be used in 
the same way for the -x, -e, -u, and -0 

flags. 

If proc is an executable file, and is not a 
compiled executable program, the 
effect is similar to that of: 

shprocargs 

An advantage of this form is that vari­
abIes that have been exported in the 
shell will still be exported from proc 
when this form is used (because the 
shell only forks to read commands from 
proc). Thus any changes made within 
proc to the values of exported variables 
will be passed on to subsequent com­
mands invoked from proc. 



The Shell 

7.7 Passing Arguments to Shell Procedures 

When a command line is scanned, any character sequence of the form $n is 
replaced by the nth argument to the shell, counting the name of the shell pro­
cedure itself as $0. This notation permits direct reference to the procedure 
name and to as many as nine positional parameters. Additional arguments 
can be processed using the shift command or by using a for loop. 

The shift command shifts arguments to the left; i.e., the value of $1 is thrown 
away, $2 replaces $1, $3 replaces $2, and so on. The highest-numbered posi­
tional parameter becomes unset ($0 is never shifted). For example, in the 
shell procedure ripple below, echo writes its arguments to the standard out­
put. 

# ripple command 
while test $# != 0 
do 

done 

echo $1 $2 $3 $4 $5 $6 $7 $8 $9 
shift 

Lines that begin with a number sign (#) are comments. The looping com­
mand, while, is discussed in "Conditional Looping: while and until' , in this 
chapter. If the procedure were invoked with: 

ripple abc 

it would print: 

The special shell variable "star" ($*) causes substitution of all positional 
parameters except $0. Thus, the echo line in the ripple example above could 
be written more compactly as: 

echo $* 

7-21 



XENIX User's Guide 

These two echo commands are not equivalent: the first prints at most nine 
positional parameters; the second prints all of the current positional parame­
ters. The shell star variable ($*) is more concise and less error-prone. One 
obvious application is in passing an arbitrary number of arguments to a com­
mand. For example: 

wc $* 

counts the words of each of the files named on the command line. 

It is important to understand the sequence of actions used by the shell in scan­
ning command lines and substituting arguments. The shell first reads input 
up to a newline or semicolon, and then parses that much of the input. Vari­
ables are replaced by their values and then command substitution (via back 
quotation marks) is attempted. I/O redirection arguments are detected, acted 
upon, and deleted from the command line. Next, the shell scans the resulting 
command line for internal field separators, that is, for any characters 
specified by IPS to break the command line into distinct arguments; explicit 
null arguments (specified by "" or / /) are retained, while implicit null argu­
ments resulting from evaluation of variables that are null or not set are 
removed. Then filename generation occurs with all metqcharacters being 
expanded. The resulting command line is then executed by the shell. 

Sometimes, command lines are built inside a shell procedure. In this case, it 
is sometimes useful to have the shell rescan the command line after all the 
initial substitutions and expansions have been performed. The special com­
mand eval is available for this purpose. eval takes a command line as its 
argument and simply rescans the line, performing any variable or command 
substitutions that are specified. Consider the following (simplified) situa­
tion: 

7-22 

command=who 
output=/ I wc -r 
eval $command $output 



The Shell 

This segment of code results in the execution of the command line: 

who I wc -1 

Uses of eval can be nested so that a command line can be evaluated several 
times. 

7.8 Controlling the Flow of Control 

The shell provides several commands that implement a variety of control 
structures useful in controlling the flow of control in shell procedures. 
Before describing these structures, a few terms need to be defined. 

A simple command is any single irreducible command specified by the name 
of an executable file. I/O redirection arguments can appear in a simple com­
mand line and are passed to the shell, not to the command. 

A command is a simple command or any of the shell control commands 
described below. A pipeline is a sequence of one or more commands 
separated by vertical bars ( I ). In a pipeline, the standard output of each com­
mand but the last is connected (by a pipe) to the standard input of the next 
command. Each command in a pipeline is run separately; the shell waits for 
the last command to finish. The exit status of a pipeline is the exit status of 
last process in the pipeline. 

A command list is a sequence of one or more pipelines separated by a semi­
colon (;), an ampersand (&), an "and-if" symbol (&&), or an "or-if" (II) 
symbol, and optionally terminated by a semicolon or an ampersand. A semi­
colon causes sequential execution of the previous pipeline. This means that 
the shell waits for the pipeline to finish before reading the next pipeline. On 
the other hand, the ampersand (&) causes asynchronous background execu­
tion of the preceding pipeline. Thus, both sequential and background execu­
tion are allowed. A background pipeline continues execution until it ter­
minates voluntarily, or until its processes are killed. 

Other uses of the ampersand include off-line printing, background compila-

7-23 



XENIX User's Guide 

tion, and generation of jobs to be sent to other computers. For example, if you 
enter: 

nohup cc prog.c& 

You may continue working while the C compiler runs in the background. A 
command line ending with an ampersand is immune to interrupts or quits that 
you might generate by typing INTERRUPT or QUIT. However, Ctrl-d will 
abort the command if you are operating over a dial-up line or have 
stty hupcl. In this case, it is wise to make the command immune to hang-ups 
(i.e., logouts) as well. The nohup command is used for this purpose. In the 
above example without nohup, if you log out from a dial-up line while cc is 
still executing, cc will be killed and your output will disappear. 

The ampersand operator should be used with restraint, especially on 
heavily-loaded systems. Other users will not consider you a good citizen if 
you start up a large number of background processes without a compelling 
reason for doing so. 

The and-if and or-if (&& and II) operators cause conditional execution of 
pipelines. Both of these are of equal precedence when evaluating command 
lines (but both are lower than the ampersand (&) and the vertical bar ( I ». In 
the command line: 

cmdl II cmd2 

the first command, cmdl, is executed and its exit status examined. Only if 
cmdl fails (i.e., has a nonzero exit status) is cmd2 executed. Thus, this is a 
more terse notation for: 

if cmdl 
test $? != 0 

then 
cmd2 

fi 

The and-if operator (&&) yields a complementary test. For example, in the 
following command line: 

cmdl && cmd2 

7-24 



The Shell 

the second command is executed only if the first succeeds (and has a zero exit 
status). In the sequence below, each command is executed in order until one 
fails: 

cmdl && cmd2 && cmd3 && ... && cmdn 

A simple command in a pipeline may be replaced by a command list 
enclosed in either parentheses or braces. The output of all the commands so 
enclosed is combined into one stream that becomes the input to the next com­
mand in the pipeline. The following line formats and prints two separate 
documents: 

{ nroff -mm text1; nrQff -mm text2; } I lpr 

Note that a space is needed after the left brace and that a semicolon should 
appear before the right brace. 

7.8.1 Using the if Statement 

The shell provides structured conditional capability with the if command. 
The simplest if command has the following form: 

if command-list 
then command-list 
fi 

The command list following the if is executed and if the last command in the 
list has a zero exit status, then the command list that follows then is exe­
cuted. The word fi indicates the end of the if command. 

To cause an alternative set of commands to be executed when there is a 
nonzero exit status, an else clause can be given with the following structure: 

if command-list 
then command-list 
else command-list 
fi 

7-25 



XENIX User's Guide 

Multiple tests can be achieved in an if command by using the elif clause, 
although the case statement may be better for large numbers of tests. For 
example: 

if test -f "$1" 
# is $1 a file? 
then pr $1 
elif test -d "$1" 
# else, is $1 a directory? 
then 
else 
fi 

(cd $1; pr *) 
echo $1 is neither a file nor a directory 

The above example is executed as follows: if the value of the first positional 
parameter is a filename (-f), then print that file; if not, then check to see if it is 
the name of a directory (-d). If so, change to that directory (cd) and print all 
the files there (pr *). Otherwise, echo the error message. 

The if command may be nested (but be sure to end each one with a fi). The 
new lines in the above examples ofifmay be replaced by semicolons. 

The exit status of the if command is the exit status of the last command exe­
cuted in any then clause or else clause. If no such command was executed, if 
returns a zero exit status. 

Note that an alternate notation for the test command uses brackets to enclose 
the expression being tested. For example, the previous example might have 
been written as follows: 

if [ -f "$1" ] 
# is $1 a file? 
then pr $1 
elif [-d "$1" ] 
# 
then 
else 
fi 

else, is $1 a directory? 
(cd $1; pr *) 
echo $1 is neither a file nor a directory 

Note that a space after the left bracket and one before the right bracket are 
essential in this form of the syntax. 

7-26 



The Shell 

7.S.2 Using the case Statement 

A mUltiple test conditional is provided by the case command. The basic for­
mat of the case statement is: 

case string in 
pattern ) command-list " 

pattern ) command-list ;; 
esac 

The shell tries to match string against each pattern in tum, using the same 
pattern-matching conventions as in filename generation. If a match is found, 
the command list following the matched pattern is executed; the double 
semicolon (;;) serves as a break out of the case and is required after each com­
mand list except the last. Note that only one pattern is ever matched, and that 
matches are attempted in order, so that if a star (*) is the first pattern in a case, 
no other patterns are looked at. 

More than one pattern may be associated with a given command list by 
specifying alternate patterns separated by vertical bars (I). 

case $i in 
*.c) cc $i 

.. 
" *.h I *.sh) 
: do nothing 
.. 
" *) echo "$i of unknown type" 
.. 
" esac 

In the above example, no action is taken for the second set of patterns 
because the nUll, colon (:) command is specified. The star (*) is used as a 
default pattern, because it matches any word. 

The exit status of case is the exit status of the last command executed in the 
case command. If no commands are executed, then case has a zero exit 
status. 

7-27 



XENIX User's Guide 

7.8.3 Conditional Looping: while and until 

A while command has the general form: 

while command-list 
do 

command-list 
done 

The commands in the first command-list are executed, and if the exit status of 
the last command in that list is zero, then the commands in the second 
command-list are executed. This sequence is repeated as long as the exit 
status of the first command-list is zero. A loop can be executed as long as the 
first command-list returns a nonzero exit status by replacing while with 
until. 

Any newline in the above example may be replaced by a semicolon. The exit 
status of a while (or until) command is the exit status of the last command 
executed in the second command-list. If no such command is executed, 
while (or until) has a zero exit status. 

7.8.4 Looping Over a List: for 

Often, one wishes to perform some set of operations for each file in a set of 
files, or execute some command once for each of several arguments. The for 
command can be used to accomplish this. The for command has the format: 

for variable in word-list 
do 

command-list 
done 

Here word-list is a list of strings separated by blanks. The commands in the 
command-list are executed once for each word in the word-list. Variable 
takes on as its value each word from the word list, in tum. The word list is 
'fixed after it is evaluated the first time. For example, the following for loop 
causes each of the C source files xec.c, cmd.c, and word.c in the current direc-

7-28 



The Shell 

tory to be compared with a file of the same name III the directory 
/usr/src/cr.nd/sh: 

for CFILE in xec cmd word 
do diff $CFILE.c /usr/src/cmd/sh/$CFILE.c 
done 

Note that the first occurrence of CFILE immediately after the word for has no 
preceding dollar sign, since the name of the variable is wanted and not its 
value. 

You can omit the "in word-list" part of a for command; this causes the 
current set of positional parameters to be used in place of word-list. This is 
useful when writing a command that performs the same set of commands for 
each of an unknown number of arguments. 

As an example, create a file named echo2 that contains the following shell 
script: 

for word 
do echo $word$word 
done 

Give echo2 execute status: 

chrnod +x echo2 

Now type the following command: 

echo2 rna pa bo fi yo no so ta 

7-29 



XENIX User's Guide 

The output from this command is: 

mama 
papa 
bobo 
fifi 
yoyo 
nono 
8080 

tata 

7.8.S Loop Control: break and continue 

The break command can be used to terminate execution of a while or a for 
loop. The continue command immediately starts the execution of the next 
iteration of the loop. These commands are effective only when they appear 
between do and done. 

The break command terminates execution of the smallest (i.e., innermost) 
enclosing loop, causing execution to resume after the nearest following 
unmatched done. Exit from n levels is obtained by break n. 

7-30 



The Shell 

The continue command causes execution to resume at the nearest enclosing 
for, while, or until statement, i.e., the one that begins the innermost loop 
containing the continue. You can also specify an argument n to continue 
and execution will resume at the nth enclosing loop: 

# This procedure is interactive. 
# "Break" and "continue" commands are used 
# to allow the user to control data entry. 
while true #loop forever 
do echo "Please enter data" 

read response 

done 

case "$response" in 
"done") break 

# no more data 
.. 
" " ") # just a carriage return, 
# keep on going 
continue .. 
" *) # process the data here 
.. 
" esac 

7.8.6 End -of-File and exit 

When the shell reaches the end-of-file in a shell procedure, it terminates exe­
cution, returning to its parent the exit status of the last command executed 
prior to the end-of-file. The top level shell is terminated by typing a Ctrl-d 
(which logs the user out ofXENIX). 

The exit command simulates an end-of-file, setting the exit status to the 
value of its argument, if any. Thus, a procedure can be terminated normally 
by placing" exit 0' , at the end of the file. 

7 .8. 7 Command Grouping: Parentheses and Braces 

There are two methods for grouping commands in the shell: parentheses and 
braces. Parentheses cause the shell to create a subshell that reads the 

7-31 



XENIX User's Guide 

enclosed commands. Both the right and left parentheses are recognized 
wherever they appear in a command line-they can appear as literal 
parentheses only when enclosed in quotation marks. For example, if you 
enter: 

garble( stuff) 

the shell prints an error message. Quoted lines, such as: 

garble" ("stuff')" 
"garble( stuff)" 

are interpreted correctly. Other quoting mechanisms are discussed in 
"Quoting Mechanisms' , in this chapter. 

This capability of creating a subshell by grouping commands is useful when 
performing operations without affecting the values of variables in the current 
shell, or when temporarily changing the working directory and executing 
commands in the new directory without having to return to the current direc­
tory. 

The current environment is passed to the subshell and variables that are 
exported in the current shell are also exported in the subshell. Thus: 

CURRENTDIR= 'pwd'; cd /usr/docs/otherdir; 
nohup nroff doc.n > doc.out&; cd $CURRENTDIR 

and 

(cd /usr/docs/otherdir; nohup nroff doc.n > doc.out&) 

accomplish the same result: /usr/docs/otherdir/doc.n is processed by nroff 
and the output is saved in /usr/docs/otherdir/doc.out. (Note that nroffis a 
command available in the XENIX Text Processing System.) However, the 
second example automatically puts you back in your original working direc­
tory. In the second example above, blanks or newlines surrounding the 
parentheses are allowed but not necessary. When entering a command line 
at your terminal, the shell will prompt with the value of the shell variable PS2 
if an end parenthesis is expected. 

Braces ({ and}) may also be used to group commands together. Both the left 
and the right brace are recognized only if they appear as the first (unquoted) 
word of a command. The opening brace may be followed by a newline (in 
which case the shell prompts for more input). Unlike parentheses, no sub­
shell is created for braces: the enclosed commands are simply read by the 

7-32 



The Shell 

shell. The braces are convenient when you wish to use the (sequential) out­
put of several commands as input to one command. 

The exit status of a set of commands grouped by either parentheses or braces 
is the exit status of the last enclosed executed command. 

7.8.8 Defining Functions 

The shell includes a function definition capability. Functions are like shell 
scripts or procedures except that they reside in memory and so are executed 
by the shell process, not by a separate process. The basic form is: 

name ( ) { list; } 

list can include any of the commands previously discussed. Functions can be 
defined in one section of a shell script to be called as many times as needed, 
making them easier to write and maintain. Here is an example of a function 
called "getyn": 

# Prompt for yes or no answer - returns non-zero for no 
getyn( ) { 

while echo "0* (yin)? c">&2 
do read yn rest 

case $yn in 
[yYD return 0 
[nND return 1 
*) echo "Please answer y or n" >&2 
esac 

done 

.. 
" .. 
" .. 
" 

In this example, the function appends a "(yin)?" to the output and accepts 
"Y", "y", "n" or "N" as input, returning a 0 or 1. If the input is anything 
else, the function prompts the user for the correct input. (Echo should never 
fail, so the while-loop is effectively infinite.) 

Functions are used just like other commands; an invocation of getyn might 
be: 

getyn "Do you wish to continue" II exit 

7-33 



XENIX User's Guide 

However, unlike other commands, the shell positional parameters $1, $2, ... , 
are set to the arguments of the function. Since an exit in a function will ter­
minate the shell procedure, the return command should be used to return a 
value back to the procedure. 

7.S.9 Input/Output Redirection and Control Commands 

The shell normally does not fork and create a new shell when it recognizes 
the control commands (other than parentheses) described above. However, 
each command in a pipeline is run as a separate process in order to direct 
input to or output from each command. Also, when redirection of input or 
output is specified explicitly to a control command, a separate process is 
spawned to execute that command. Thus, when if, while, until, case, and for 
are used in a pipeline consisting of more than one command, the shell forks 
and a subshell runs the control command. This has two implications: 

1. Any changes made to variables within the control command are not 
effective once that control command finishes (this is similar to the 
effect of using parentheses to group commands). 

2. Control commands run slightly slower when redirected, because of 
the additional overhead of creating a shell for the control command. 

7.S.10 Transfer Between Files: The Dot (.) Command 

A command line of the form: 

. proc 

causes the shell to read commands from proc without spawning a new pro­
cess. Changes made to variables in proc are in effect after the dot command 
finishes. This is a good way to gather a number of shell variable initializa­
tions into one file. A common use of this command is to reinitialize the top 
level shell by reading the .profile file with: 

.profile 

7-34 



The Shell 

7.8.11 Interrupt Handling: trap 

Shell procedures can use the trap command to disable a signal (cause it to be 
ignored), or redefine its action. The form of the trap command is: 

trap arg signal-list 

Here arg is a string to be interpreted as a command list and signal-list con­
sists of one or more signal numbers as described in signal (S) in the XENIX 
Programmer's Reference. The most important of these signals follow: 

Number 
o 
1 
2 
3 
9 
11 
15 

Signal 
Exit from the shell 
HANGUP 
INTERRUPT character (DELETE or RUB OUT) 
QUIT (Ctrl-\) 
Kll..L (cannot be caught or ignored) 
Segmentation violation (cannot be caught or ignored) 
Software termination signal 

The commands in arg are scanned at least once, when the shell first 
encounters the trap command. Because of this, it is usually wise to use sin­
gle rather than double quotation marks to surround these commands. The 
former inhibit immediate command and variable substitution. This becomes 
important, for instance, when one wishes to remove temporary files and the 
names of those files have not yet been determined when the trap command is 
first read by the shell. The following procedure will print the name of the 
current directory in the user information as to how much of the job was done: 

trap /echo Directory was 'pwd' when interrupted / 2 3 15 
for i in /bin /usr/bin /usr/gas/bin 
do 

cd $i 
# commands to be executed in directory $i here 

done 

7-35 



XENIX User's Guide 

Beware that the same procedure with double rather than single quotation 
marks does something different. The following prints the name of the direc­
tory from which the procedure was first executed: 

trap "echo Directory was 'pwd' when interrupted" 2 3 15 

A signal 11 can never be trapped, because the shell itself needs to catch it to 
deal with memory allocation. Zero is interpreted by the trap command as a 
signal generated by exiting from a shell. This occurs either with an exit com­
mand' or by "falling through" to the end of a procedure. If arg is not 
specified, then the action taken upon receipt of any of the signals in the signal 
list is reset to the default system action. If arg is an explicit null string ( // or 
"" ), then the signals in the signal list are ignored by the shell. 

The trap command is most frequently used to make sure that temporary files 
are removed upon termination of a procedure. The preceding example 
would be written more typically as follows: 

temp=$HOME/temp/$ $ 
trap 'rm -F $temp; exit' 0 1 2 3 15 
Is> $temp 

# commands that use $temp here 

In this example, whenever signal 1 (hangup), 2 (interrupt), 3 (quit), or 15(ter­
minate) is received by the shell procedure, or whenever the shell procedure is 
about to exit, the commands enclosed between the single quotation marks 
are executed. The exit command must be included, or else the shell contin­
ues reading commands where it left offwhen the signal was received. 

Sometimes the shell continues reading commands after executing trap com­
mands. The following procedure takes each directory in the current direc­
tory, changes to that directory, prompts with its name, and executes com­
mands typed at the terminal until an end-of-file (Ctrl-D) or an interrupt is 
received. An end-of-file causes the read command to return a onzero exit 
status, and thus the while loop terminates and the next directory cycle is ini­
tiated. An interrupt is ignored while executing the requested commands, but 

7-36 



causes termination of the procedure when it is waiting for input: 

d='pwd' 
for i in * 
do if test -d $d/$i 

then cd $d/$i 

fi 
done 

while echo "$i:" 
trap exit 2 
read x 

do trap: 2 

done 

# ignore interrupts 
eval $x 

The Shell 

Several traps may be in effect at the same time: if multiple signals are 
received simultaneously, they are serviced in numerically ascending order. 
To determine which traps are currently set, enter: 

trap 

It is important to understand some things about the way in which the shell 
implements the trap command. When a signal (other than 11) is received by 
the shell, it is passed on to whatever child processes are currently executing. 
When these (synchronous) processes terminate, normally or abnormally, the 
shell polls any traps that happen to be set and executes the appropriate trap 
commands. This process is straightforward, except in the case of traps set at 
the command (outermost, or login) level. In this case, it is possible that no 
child process is running, so before the shell polls the traps, it waits for the ter­
mination of the first process spawned after the signal was received. 

When a signal is redefined in a shell script, this does not redefine the signal 
for programs invoked by that script; the signal is merely passed along. A dis­
abled signal is not passed. 

For internal commands, the shell normally polls traps on completion of the 
command. An exception to this rule is made for the read command, for 
which traps are serviced immediately, so that read can be interrupted while 
waiting for input. . 

7-37 



7.9 Special Shell Commands 

There are several special commands that are internal to the shell, some of 
which have already been mentioned. The shell does not fork to execute these 
commands, so no additional processes are spawned. These commands 
should be used whenever possible, because they are, in general, faster and 
more efficient than other XENIX commands. 

Several of the special commands have q.lready been described because they 
affect the flow of control. They are dot ( . ), break, continue, exit, and trap. 
The set command is also a special command. Descriptions of the remaining 
special commands are given here: 

cd arg 

exec arg ... 

hash [-r] name 

7-38 

The null command. This command does 
nothing and can be used to insert comments 
in shell procedures. Its exit status is zero 
(true). Its utility as a comment character 
has largely been supplanted by the number 
sign (#) which can be used to insert com­
ments to the end-of-line. Beware: any 
arguments to the null command are parsed 
for syntactic correctness; when in doubt, 
quote such arguments. Parameter substitu­
tion takes place, just as in other commands. 

Make arg the current directory. If arg is 
not a valid directory, or the user is not 
authorized to access it, a nonzero exit 
status is returned. Specifying cd with no 
arg is equivalent to entering 
"cd$HOME" which takes you to your 
home directory. 

If arg is a command, then the shell exe­
cutes the command without forking and 
returning to- the current shell. This is 
effectively a "goto' , and no new process is 
created. Input and output redirection argu­
ments are allowed on the command line. If 
only input and output redirection argu­
ments appear, then the input and output of 
the shell itself are modified accordingly. 

For each name, the location in the search 
path of the command speci tied by name is 
determined and remembered by the shell. 
The -r option causes the shell to forget all 



newgrp arg ... 

pwd 

read var ... 

readonly var ... 

return n 

The Shell 

remembered locations. If no arguments are 
given, information about remembered 
commands is presented. Hits is the number 
of times a command has been invoked by 
the shell process. Cost is a measure of the 
work required to locate a command in the 
search path. There are certain situations 
which require that the stored location of a 
command be recalculated. Commands for 
which this will be done are indicated by an 
asterisk (*) adjacent to the hits informa­
tion. Cost will be incremented when the 
recalculation is done. 

The newgrp command is executed, replac­
ing the shell. Newgrp in turn creates anew 
shell. Beware: only environment variables 
will be known in the shell created by the 
newgrp command. Any variables that 
were exported will no longer be marked as 
such. 

Print the current working directory. See 
pwd(C) for usage and description. 

One line (up to a newline) is read from the 
standard input and the first word is assigned 
to the first variable, the second word to the 
second variable, and so on. All words left 
over are assigned to the last variable. The 
exit status of read is zero unless an end-of­
file is read. 

The specified variables are made read only 
so that no subsequent assignments may be 
made to them. If no arguments are given, a 
list of all readonly and of all exported vari­
abIes is given. 

Causes a function to exit with the return 
value specified by n. If n is omitted, the 
return status is that of the last command 
executed. 

7-39 



XENIX User's Guide 

times 

type name 

ulimit [ -f ] n 

umasknnn 

unset name 

7-40 

The accumulated user and system times for 
processes run from the current shell are 
printed. 

For each name, indicate how it would be 
interpreted if used as a command name. 

This imposes a size limit of n blocks on files 
written. The -fflag imposes a size limit of n 
blocks on files written by child processes 
(files of any size may be read). With no 
argument, the current limit is printed. If no 
option is given and a number is specified, -f 
is assumed. 

The user file creation mask is set to nnn. If 
nnn is omitted, then the current value of the 
mask is printed. This bit-mask is used to set 
the default permissions when creating files. 
For example, an octal umask of 137 
corresponds to the following bit-mask and 
permission settings for a new ly created file: 

user group other 
Octal 1 3 7 
bit-mask 001 011 111 
permissions rw- r- - - --

See umask(C) in the XENIX User's Refer­
ence for information on the value of nnn. 

For each name, remove the corresponding 
variable or function. The variables PATH, 
PSI, PS2, MAILCHECK and IFS cannot be 
unset. 



wait n 

The Shell 

The shell waits for all currently active child 
processes to tenninate. If n is specified, the 
shell waits for the specified process to ter­
minate. The exit status of wait is always 
zero if n is not given; otherwise it is the exit 
status of child n. 

7.10 Creation and Organization of Shell Procedures 

A shell procedure can be created in two simple steps. The first is building an 
ordinary text file. The second is changing the mode of the file to make it exe­
cutable, thus permitting it to be invoked by: 

proc args 

rather than 

sh proc args 

The second step may be omitted for a procedure to be used once or twice and 
then discarded, but is recommended for frequently-used ones. For example, 
create a file named mailall with the following contents: 

LETTER=$1 
shift 
for i in $* 
do mail $i < $LETTER 
done 

Next enter: 

chmod +x mailall 

The new command might then be invoked from within the current directory 
by entering: 

mailall letter joe bob 

7-41 



XENIX User's Guide 

Here letter is the name of the file containing the message you want to send, 
andjoe and bob are people you want to send the message to. Note that shell 
procedures must always be at least readable, so that the shell itself can read 
commands from the file. 

If mailall were thus created in a directory whose name appears in the user's 
PATH variable, the user could change working directories and still invoke 
the mailall command. 

Shell procedures are often used by users running the csh. However, if the first 
character of the procedure is a # (comment character), the csh assumes the 
procedure is a csh script, and invokes Ibinlcsh to execute it. Always start sh 
procedures with some other character if csh users are to run the procedure at 
anytime. This invokes the standard shell/binish. 

Shell procedures may be created dynamically. A procedure may generate a 
file of commands, invoke another instance of the shell to execute that file, 
and then remove it. An alternate approach is that of using the dot command 
(.) to make the current shell read commands from the new file, allowing use 
of existing shell variables and avoiding the spawning of an additional pro­
cess for another shell. 

Many users prefer writing shell procedures to writing programs in C or other 
traditional languages. This is true for several reasons: 

1. A shell procedure is easy to create and maintain because it is only a 
file of ordinary text. 

2. A shell procedure has no corresponding object program that must be 
generated and maintained. 

3. A shell procedure is easy to create quickly, use a few times, and then 
remove. 

4. Because shell procedures are usually short in length, written in a 
high-level programming language, and kept only in their source­
language form, they are generally easy to find, understand, and 
modify. 

By convention, directories that contain only commands and shell procedures 
are named bin. This name is derived from the word "binary", and is used 
because compiled and executable programs are often called "binaries" to 
distinguish them from program source files. Most groups of users sharing 
common interests have one or more bin directories set up to hold common 
procedures. Some users have their PATH variable list several such direc-

7-42 



The Shell 

tories. Although you can have a number of such directories, it is unwise to go 
overboard: it may become difficult to keep track of your environment and 
efficiency may suffer. 

7.11 More About Execution Flags 

There are several execution flags available in the shell that can be useful in 
shell procedures: 

-e This flag causes the shell to exit immediately if any com­
mand that it executes exits with a nonzero exit status. This 
flag is useful for shell procedures composed of simple com­
mand lines; it is not intended for use in conjunction with 
other conditional constructs. 

-u This flag causes unset variables to be considered errors 
when substituting variable values. This flag can be used to 
effect a global check on variables, rather than using condi­
tional substitution to check each variable. 

-t This flag causes the shell to exit after reading and executing 
the commands on the remainder of the current input line. 
This flag is typically used by C programs which call the shell 
to execute a single command. 

-n This is a "don't execute" flag. On occasion, one may want 
to check a procedure for syntax errors, but not execute the 
commands in the procedure. Using "set-nv" at the begin­
ning of a file will accomplish this. 

-k This flag causes all arguments of the form variable =value 
to be treated as keyword parameters. When this flag is not 
set, only such arguments that appear before the command 
name are treated as keyword parameters. 

7.12 Supporting Commands and Features 

Shell procedures can make use of any XENIX command. The commands 
described in this section are either used especially frequently in shell pro­
cedures, or are explicitly designed for such use. 

7-43 



XENIX User's Guide 

7.12.1 Conditional Evaluation: test 

The test command evaluates the expression specified by its arguments and, if 
the expression is true, test returns a zero exit status. Otherwise, a nonzero 
(false) exit status is returned. test also returns a nonzero exit status if it has no 
arguments. Often it is convenient to use the test command as the first com­
mand in the command list following an if or a while. Shell variables used in 
test expressions should be enclosed in double quotation marks if there is any 
chance of their being null or not set. 

The square brackets may be used as an alias to test, so that: 

[ expression] 

has the same effect as: 

test expression 

Note that the spaces before and after the expression in brackets are essential. 

The following is a partial list of the options that can be used to construct a 
conditional expression: 

-r file 

-w file 

-x file 

-s file 

-d file 

-f file 

-z sl 

-n sl 

-t fildes 

7-44 

True if the named file exists and is readable by the 
user. 

True if the named file exists and is writable by the 
user. 

True if the named file exists and is executable by the 
user. 

True if the named file exists and has a size greater 
than zero. 

True if the named file is a directory. 

True if the named file is an ordinary file. 

True if the length of string sl is zero. 

True if the length of the string sl is nonzero. 

True if the open file whose file descriptor number is 
fildes is associated with a terminal device. Iffildes 
is not specified, file descriptor 1 is used by default. 



sl =s2 

sl !=s2 

sl 

nl -eq n2 

The Shell 

True if strings sl and s2 are identical. 

True if strings sl and s2 are not identical. 

True if sl is not the null string. 

True if the integers nl and n2 are algebraically 
equal; other algebraic comparisons are indicated by 
-ne (not equal), -gt (greater than), -ge (greater than 
or equal to), -It (less than), and -Ie (less than or equal 
to). 

These may be combined with the following operators: 

-a 

-0 

(expr) 

Unary negation operator. 

Binary logical AND operator. 

Binary logical OR operator; it has lower precedence 
than the logical AND operator (-a). 

Parentheses for grouping; they must be escaped to 
remove their significance to the shell. In the absence 
of parentheses, evaluation proceeds from left to 
right. 

Note that all options, operators, filenames, etc. are separate arguments to 
test. 

7.12.2 Echoing Arguments 

The echo command has the following syntax: 

echo [options] [args] 

echo copies its arguments to the standard output, each followed by a single 
space, except for the last argument, which is normally followed by a new line. 
You can use it to prompt the user for input, to issue diagnostics in shell pro­
cedures, or to add a few lines to an output stream in the middle of a pipeline. 
Another use is to verify the argument list generation process before issuing a 
command that does something drastic. 

7-45 



XENIX User's Guide 

You can replace the Is command with 

echo * 

because the latter is faster and prints fewer lines of output. 

The -n option to echo removes the newline from the end of the echoed line. 
Thus, the following two commands prompt for input and then allow entering 
on the same line as the prompt: 

echo -n /enter name: 
read name 

The echo command also recognizes several escape sequences described in 
echo (C) in the XENIX User's Reference. 

7.12.3 Expression Evaluation: expr 

The expr command provides arithmetic and logical operations on integers 
and some pattern-matching facilities on its arguments. It evaluates a single 
expression and writes the result on the standard output; expr can be used 
inside grave accents to set a variable. Some typical examples follow: 

# increment $A 
A='expr $a + l' 
# put third through last characters of 
# $1 into substring 
substring= 'expr "$1" : / . .\(. *\) 
# obtain length of $1 
c='expr"$l": /* 

The most common uses of expr are in counting iterations of a loop and in 
using its pattern-matching capability to pick apart strings. 

7-46 



The Shell 

7.12.4 True and False 

The true and false commands petform the functions of exiting with zero and 
nonzero exit status, respectively. The true and false commands are often 
used to implement unconditional loops. For example, you might enter: 

while true 
do echo forever 
done 

This will echo' 'forever" on the screen until an INTERRUPT is entered. 

7.12.5 In-Line Input Documents 

Upon seeing a command line of the form: 

command« eo/string 

where eo/string is any arbitrary string, the shell will take the subsequent 
lines as the standard input of command until a line is read consisting only of 
eofstring. (By appending a minus (-) to the input redirection symbol «<), 
leading spaces and tabs are deleted from each line of the input document 
before the shell passes the line to command.) 

The shell creates a temporary file containing the input document and per­
forms variable and command substitution on its contents before passing it to 
the command. Pattern matching on filenames is performed on the arguments 
of command lines in command substitutions. In order to prohibit all substitu­
tions, you may quote any character of eo/string: 

command < <\eofstring 

The in-line input document feature is especially useful for small amounts of 
input data, where it is more convenient to place the data in the shell pro­
cedure than to keep it in a separate file. For instance, you could enter: 

cat «-xx 

xx 

This message will be printed on the 
terminal with leading tabs and spaces 
removed. 

7-47 



XENIX User's Guide 

This in-line input document feature is most useful in shell procedures. Note 
that in-line input documents may not appear within grave accents. 

7.12.6 Input/ Output Redirection Using File Descriptors 

We menrioned above that a command occasionally directs output to some 
file associated with a file descriptor other than 1 or 2. In languages such as C, 
one can associate output with any file descriptor by using the write (S) sys­
tem call (see the XENIX Programmer's Reference). The shell provides its 
own mechanism for creating an output file associated with a particular file 
descriptor. By entering: 

fdl >& fd2 

wherefdl andfd2 are valid file descriptors, one can direct output that would 
normally be associated with file descriptorfdl to the file associated withfd2. 
The default value forfd1 andfd2 is 1. If, at run time, no file is associated with 
fd2, then the redirection is void. The most common use of this mechanism is 
that of directing standard error output to the same file as standard output. 
This is accomplished by entering: 

command 2>& 1 

If you wanted to redirect both standard output and standard error output to the 
same file, you would enter: 

command l>file 2>&1 

The order here is significant: first, file descriptor 1 is associated with file; 
then file descriptor 2 is associated with the same file as is currently associ­
ated with file descriptor 1. If the order of the redirections were reversed, 
standard error output would go to the terminal, and standard output would go 
to file, because at the time of the error output redirection, file descriptor 1 still 
would have been associated with the terminal. 

This mechanism can also be generalized to the redirection of standard input. 
You could enter: 

fda <& fdb 

to cause both file descriptors fda andfdb to be associated with the same input 
file. If fda or fdb is not specified, file descriptor 0 is assumed. Such input 
redirection is useful for a command that uses two or more input sources. 

7-48 



The Shell 

7.12.7 Conditional Substitution 

Normally, the shell replaces occurrences of $variable by the string value 
assigned to variable, if any. However, there exists a special notation to allow 
conditional substitution, dependent upon whether the variable is set or not 
null. By definition, a variable is set if it has ever been assigned a value. The 
value of a variable can be the null string, which may be assigned to a variable 
in anyone of the following ways: 

A= 
bcd="" 
efg=// 
set // 

The first three examples assign null to each of the corresponding shell vari­
abIes. The last example sets the first and second positional parameters to 
null. The following conditional expressions depend upon whether a variable 
is set and not null. Note that the meaning of braces in these expressions 
differs from their meaning when used in grouping shell commands. Parame­
ter as used below refers to either a digit or a variable name. 

$ { variable: -string} 

$ { variable :=string } 

$ { variable :? string} 

If variable is set and is nonnull, then sub­
stitute the value $variable in place of this 
expression. Otherwise, replace the 
expression with string. Note that the 
value of variable is not changed by the 
evaluation of this expression. 

If variable is set and is nonnull, then sub­
stitute the value $variable in place of this 
expression. Otherwise, set variable to 
string, and then substitute the value 
$variable in place of this expression. 
Positional parameters may not be 
assigned values in this fashion. 

If variable is set and is nonnull, then sub­
stitute the value of variable for the 
expression. Otherwise, print a message of 
the form 

variable: string 

and exit from the current shell. (If the 
shell is the login shell, it is not exited.) If 

7-49 



XENIX User's Guide 

string is omitted in this form, then the 
message 

variable: parameter null or not set ~ 

is printed instead. 

$ { variable :+string } If variable is set and is nonnull, then sub­
stitute string for this expression. Other­
wise, substitute the null string. Note that 
the value of variable is not altered by the 
evaluation of this expression. 

These expressions may also be used without the colon. In this variation, the 
shell does not check whether the variable is null or not; it only checks 
whether the variable has ever been set. 

The two examples below illustrate the use of this facility: 

1. This example performs an explicit assignment to the PATH variable: 

PATH=${PATH:-":/bin:/usr/bin"} 

This says, if PATH has ever been set and is not null, then it keeps its 
current value; otherwise, set it to the string" :/bin:/usr/bin". 

2. This example automatically assigns the HOME variable a value: 

cd ${HOME:="/usr/gas"} 

If HOME is set, and is not null, then change directory to it. Otherwise 
set HOME to the given value and change directory to it. 

7 .12.8 Invocation Flags 

There are five flags that may be specified on the command line when invok­
ing the shell. These flags may not be turned on with the set command: 

7-50 

-i If this flag is specified, or if the shell's input and output are 
both attached to a terminal, the shell is interactive. In such a 
shell, INTERRUPT (signal 2) is caught and ignored, and 
TERMINATE (signal 15) and QUIT (signal 3) are ignored. 

-s If this flag is specified or if no input/output redirection argu­
ments are given, the shell reads commands from standard 



The Shell 

input Shell output is written to file descriptor 2. All 
remaining arguments specify the positional parameters. 

-c When this flag is turned on, the shell reads commands from 
the first string following the flag. Remaining arguments are 
ignored. 

-t When this flag is on, a single command is read and executed, 
then the shell exits. This flag is not useful interactively, but 
is intended for use with C programs. 

mr If this flag is present the shell is a restricted shell (see rsh 
(C)). 

7.13 Effective and Efficient Shell Programming 

This section outlines strategies for writing efficient shell procedures, ones 
that do not waste resources in accomplishing their purposes. The primary 
reason for choosing a shell procedure to perform a specific function is to 
achieve a desired result at a minimum human cost. Emphasis should always 
be placed on simplicity, clarity, and readability, but efficiency can also be 
gained through awareness of a few design strategies. In many cases, an 
effective redesign of an existing procedure improves its efficiency by reduc­
ing its size, and often increases its comprehensibility. In any case, you 
should not worry about optimizing shell procedures unless they are intoler­
ably slow or are known to consume an inordinate amount of a system's 
resources. 

The same kind of iteration cycle should be applied to shell procedures as to 
other programs: write code, measure it, and optimize only thefew important 
parts. The user should become familiar with the time command, which can 
be used to measure both entire procedures and parts thereof. Its use is 
strongly recommended; human intuition is notoriously unreliable when used 
to estimate timings of programs, even when the style of programming is a 
familiar one. Each timing test should be run several times, because the 
results are easily disturbed by variations in system load. 

7.13.1 Number of Processes Generated 

When large numbers of short commands are executed, the actual execution 
time of the commands may well be dominated by the overhead of creating 
processes. The procedures that incur significant amounts of such overhead 

7-51 



XENIX User's Guide 

are those that perform much looping, and those that generate command 
sequences to be interpreted by another shell. 

If you are worried about efficiency, it is important to know which commands 
are currently built into the shell, and which are not. Here is the alphabetical 
list of those that are built in: 

break case cd continue echo 
eval exec exit export for 
if read readonly return set 
shift test times trap umask 
until wait while 
{} 

Parentheses, (), are built into the shell, but commands enclosed within them 
are executed as a child process, i.e., the shell does a fork, but no exec. Any 
command not in the above list requires both fork and exec. 

The user should always have at least a vague idea of the number of processes 
generated by· a . shell procedure. In the bulk of observed procedures, the 
number of processes created (not necessarily simultaneously) can be 
described by: 

processes = (k * n) + c 

where k and c are constants, and n may be the number of procedure argu­
ments, the number of lines in some input file, the number of entries in some 
directory, or some other obvious quantity. Efficiency improvements are 
most commonly gained by reducing the value of k, sometimes to zero. 

Any procedure whose complexity measure includes n ~2 terms or higher 
powers of n is likely to be intolerably expensive. 

7-52 



The Shell 

As an example, here is an analysis of a procedure named split, whose text is 
given below: 

# split 
trap /rm temp$$; trap 0; exit/ 0 1 2 3 15 
start 1 =0 start2=0 
b=/[A-Za-z] / 
cat> temp$$ 

# read stdin into temp file 
# save original lengths of $1, $2 

if test -s "$1" 
then start 1 = 'wc -1 < $1' 
fi 
if test -s "$2" 
then start2= 'wc -1 < $2' 
fi 
grep "$b" temp$$ » $1 

# lines with letters onto $1 
grep -v "$b" temp$$ I grep /[0-9] / » $2 

# lines without letters onto $2 
total=" 'wc -1 < temp$$' " 
endl=" 'wc -1 < $1' " 
end2=" 'wc -1 < $2' " 
lost=" 'expr $total - \($endl - $startl\) \ 
- \($end2 - $start2\)' " 
echo "$total read, $lost thrown away" 

For each iteration of the loop, there is one expr plus either an echo or another 
expr. One additional echo is executed at the end. If n is the number of lines 
of input, the number of processes is 2 * n + 1. 

Some types of procedures should not be written using the shell. For example, 
if one or more processes are generated for each character in some file, it is a 
good indication that the procedure should be rewritten in C. Shell pro­
cedures should not be used to scan or build files a character at a time. 

7.13.2 Number of Data Bytes Accessed 

It is worthwhile to consider any action that reduces the number of bytes read 
or written. This may be important for those procedures whose time is spent 
passing data around among a few processes, rather than in creating large 
numbers of short processes. Some filters shrink their output, others usually 

7-53 



XENIX User's Guide 

increase it. It always pays to put the shrinkers first when the order is 
irrelevant. For instance, the second of the following examples is likely to be 
faster because the input to sort will be much smaller: 

sort file I grep pattern 
grep pattern file I sort 

7.13.3 Shortening Directory Searches 

Directory searching can consume a great deal of time, especially in those 
applications that utilize deep directory structures and long pathnames. Judi­
cious use of cd, the change directory command, can help shorten long path­
names and thus reduce the number of directory searches needed. As an exer­
cise, try the following commands: 

Is -1 /usr/bin/* >/dev/null 
cd /usr/bin; Is -1 * >/dev/null 

The second command will run faster because of the fewer directory 
searches. 

7.13.4 Directory-Search Order and the PATH Variable 

The PATH variable is a convenient mechanism for allowing organization 
and sharing of procedures. However, it must be used in a sensible fashion, or 
the result may be a great increase in system overhead. 

The process of finding a command involves reading every directory included 
in every pathname that precedes the needed pathname in the current PATH 
variable. As an example, consider the effect of invoking nroff (i.e., 
lusrlbinlnroJf) when the value of PATH is ":/bin:/usr/bin". The sequence of 
directories read is: 

/ 
/bin 
/ 
/usr 
/usr/bin 

This is a total of six directories. A long path list assigned to PATH can 
increase this number significantly. 

7-54 



The Shell 

The vast majority of command executions are of commands found in /bin 
and, to a somewhat lesser extent, in /usr/ bin. Careless PATH setup may lead 
to a great deal of unnecessary searching. The following four examples are 
ordered from worst to best with respect to the efficiency of command 
searches: 

:/usr/john/bin:/usr/localbin:/bin:/ usr/bin 
:/bin:/usr/john/bin:/usr/localbin:/usr/bin 
:/bin:/usr/bin:/usr/john/bin:/usr/localbin 
/bin: :/usr/bin:/usr/john/bin:/usr/localbin 

The first one above should be avoided. The others are acceptable and the 
choice among them is dictated by the rate of change in the set of commands 
kept in/bin and/usr/bin. 

A procedure that is expensive because it invokes many short-lived com­
mands may often be speeded up by setting the PATH variable inside the pro­
cedure so that the fewest possible directories are searched in an optimum 
order. 

7.13.5 Good Ways to Set Up Directories 

It is wise to avoid directories that are larger than necessary. You should be 
aware of several special sizes. A directory that contains entries for up to 30 
files (plus the required. and •. ) fits in a single disk block and can be searched 
very efficiently. One that has up to 286 entries is still a small directory; any­
thing larger is usually a disaster when used as a working directory. It is espe­
cially important to keep login directories small, preferably one block at 
most. Note that, as a rule, directories never shrink. This is very important to 
understand, because if your directory ever exceeds either the 30 or 286 thres­
holds, searches will be inefficient; furthermore, even if you delete files so 
that the number of files is less than either threshold, the system will still con­
tinue to treat the directory inefficiently. 

7.14 Shell Procedure Examples 

The power of the XENIX shell command language is most readily seen by 
examining how many labor-saving XENIX utilities can be combined to per­
form powerful and useful commands with very little programming effort. 
This section gives examples of procedures that do just that. By studying 
these examples, you will gain insight into the techniques and shortcuts that 

7-55 



XENIX User's Guide 

can be used in programming shell procedures (also called' 'scripts"). Note 
the use of the null command (:) to begin each shell procedure and the use of 
the number sign (#) to introduce comments. 

It is intended that the following steps be carried out for each procedure: 

1. Place the procedure in a file with the indicated name. 

2. Give the file execute permission with the chmod command. 

3. Move the file to a directory in which commands are kept, such as your 
own bin directory. 

4. Make sure that the path of the bin directory is specified in the PATH 
variable found in .profile. 

5. Execute the named command. 

BINUNIQ 

Is /bin lusr/bin I sort I uniq -d 

This procedure determines which files are in both /bin and /usr/bin. It is done 
because files in /bin will "override" those in /usr/bin during most searches 
and duplicates need to be weeded out. If the /usr/bin file is obsolete, then 
space is being wasted; if the /bin file is outdated by a corresponding entry in 
/usr/bin then the wrong version is being run and, again, space is being 
wasted. This is also a good demonstration of "sort I uniq" to find matches 
and duplications. 

7-56 



The Shell 

COPYPAIRS 

# Usage: copypairs file1 file2 ... 
# Copies file 1 to file2, file3 to file4, ... 
while test "$2" != "" 
do 

done 

cp $1 $2 
shift; shift 

if test "$1" != "" 
then echo "$0: odd number of arguments" >&2 

fi 

This procedure illustrates the use of a while loop to process a list of posi­
tional parameters that are somehow related to one another. Here a while 
loop is much better than a for loop, because you can adjust the positional 
parameters with the shift command to handle related arguments. 

COPYTO 

# Usage: copy to dir file ... 
# Copies argument files to "dir", 
# making sure that at least 
# two arguments exist, that "dir" is a directory, 
# and that each additional argument 
# is a readable file. 
if test $# -It 2 

then echo "$0: usage: copy to directory file ... ">&2 
elif test ! -d $1 

then echo "$0: $1 is not a directory";>&2 
else dir=$l; shift 

for each file 
do cp $eachfile $dir 
done 

fi 

7-57 



XENIX User's Guide 

This procedure uses an if command with several parts to screen out improper 
usage. The for loop at the end of the procedure loops over all of the argu­
ments to copy to but the first; the original $1 is shifted off. 

DISTINCTI 

# Usage: distinct! 
# Reads standard input and reports list of 
# alphanumeric strings that differ only in case, 
# giving lowercase form of each. 
tr -cs ~ A-Za-zO-9 ~ ,012 ~ I sort-ul\ 
tr ~ A-Z~ ~a-z~ I sort I uniq -d 

This procedure is an example of the kind of process that is created by the 
left-to-right construction of a long pipeline. Note the use of the backslash at 
the end of the first line as the line continuation character. It may not be 
immediately obvious how this command works. You may wish to consult tr 
(C), sort (C), and uniq (C) in the XENIX User's Reference if you are com­
pletely unfamiliar with these commands. The tr command translates all 
characters except letters and digits into newline characters, and then 
squeezes out repeated newline characters. This leaves each string (in this 
case, any contiguous sequence ofletters and digits) on a separate line. The 
sort command sorts the lines and emits only one line from any sequence of 
one or more repeated lines. The next tr converts everything to lowercase, so 
that identifiers differing only in case become identical. The output is sorted 
again to bring such duplicates together. The "uniq -d" prints (once) only 
those lines that occur more than once, yielding the desired list. 

The process of building such a pipeline relies on the fact that pipes and files 
can usually be interchanged. The first line below is equivalent to the last two 
lines, assuming that sufficient disk space is available: 

cmd 1 I cmd2 I cmd3 

cmd 1 > temp 1; < temp 1 cmd2 > temp2; < temp2 cmd3 
rm temp[123] 

Starting with a file of test data on the standard input and working from left to 
right, each command is executed taking its input from the previous file and '~ .. 
putting its output in the next file. The final output is then examined to make 
sure that it contains the expected result. The goal is to create a series of 
transformations that will convert the input to the desired output. 

7-58 



The Shell 

Although pipelines can give a concise notation for complex processes, you 
should exercise some restraint, since such practice often yields 
incomprehensible code. 

DRAFT 

# Usage: draft file(s) 
# Print manual pages for Diablo printer. 
fori in $* 

do nroff -man $i I lpr 
done 

Users often write this kind of procedure for convenience in dealing with 
commands that require the use of distinct flags that cannot be given default 
values that are reasonable for all (or even most) users. 

EDFIND 

# Usage: edfind file arg 
# Finds the last occurrence in "file" of a line 
# whose beginning matches "arg", then prints 
# 3 lines (the one before, the line itself, 
# and the one after) 
ed - $1« -EOF 

EOF 

r$2? 
-,+p 
q 

This illustrates the practice of using ed in-line input scripts into which the 
shell can substitute the values of variables. 

7-59 



XENIX User's Guide 

EDLAST 

# Usage: edlast file 
# Prints the last line of file, 
# then deletes that line. 
ed - $1 «-\! 

! 

$p 
$d 
w 
q 

echo done 

This procedure illustrates taking input from within the file itself up to the 
exclamation point ( !). Variable substitution is prohibited within the input 
text because of the backslash. 

FSPLIT 

7-60 

# Usage: fsplit file1 file2 
# Reads standard input and divides it into 3 parts 
# by appending any line containing at least one letter 
# to file 1 , appending any line containing digits but 
# no letters to file2, and by throwing the rest away. 
count=O gone=O 
while read next 
do 

done 

count="'expr $count + 1'" 
case "$next" in 
* [A-Za-z]*) 

echo "$next" »$1;; 
*[0-9]*) 

echo "$next" »$2;; 
*) 

gone="'expr $gone + 1'" 
esac 

echo "$count lines read, $gone thrown away" 



The Shell 

Each iteration of the loop reads a line from the input and analyzes it. The 
loop terminates only when read encounters an end-of-file. Note the use of 
the expr command. 

Do not use the shell to read a line at a time unless you must because it can be 
an extremely slow process. 

LISTFIELDS 

grep $* I tr "." ''\012'' 

This procedure lists lines containing any desired entry that is given to it as an 
argument. It places any field that begins with a colon on a newline. Thus, if 
given the following input: 

joe newman: 13509 NE 78th St: Redmond, Wa 98062 

listfields will produce this: 

joe newman 
13509 NE 78th St 
Redmond, Wa 98062 

Note the use of the tr command to transpose colons to linefeeds. 

MKFILES 

# Usage: mkfiles pref [quantity] 
# Makes "quantity" files, named prefl, pref2, ... 
# Default is 5 as determined on following line. 
quantity=${2-5 } 
i=1 
while test "$i" -Ie "$quantity" 
do 

> $1$i 
i="'expr $i + 1'" 

done 

7-61 



XENIX User's Guide 

The mkfiles procedure uses output redirection to create zero-length files. 
The expr command is used for counting iterations ofthe while loop. 

NULL 

# Usage: null files 
# Create each of the named files as an empty file. 
for each file 
do 

>$eachfile 
done 

This procedure uses the fact that output redirection creates the (empty) out­
put file if a file does not already exist. 

PHONE 

# Usage: phone initials ... 
# Prints the phone numbers of the 
# people with the given initials. 
echo / inits ext home / 
grep "$1" «END 

jfk 1234 999-2345 
lbj 2234 583-2245 
hst 3342 988-1010 
jqa 4567 555-1234 

END 

This procedure is an example of using an in-line input script to maintain a 
small database. 

7-62 



TEXTFILE 

if test "$1" = "-s" 
then 
# Return condition code 

shift 

fi 

if test -z "'$0 $*'" # check return value 
then 

exit 1 
else 

exit 0 
fi 

if test $# -It 1 
then echo "$0: Usage: $0 [ -s ] file ... " 1>&2 

exit 0 
fi 

file $* I fgrep ~ text~ I sed ~s/: .*/t 

The Shell 

To determine which files in a directory contain only textual information, 
textfile filters argument lists to other commands. For example, the following 
command line will print all the text files in the current directory: 

pr 'textfile *' I lpr 

This procedure also uses an -s flag which silently tests whether any of the 
files in the argument list is a text file. 

WRITEMAIL 

# Usage: writemail message user 
# If user is logged in, 
# writes message to terminal; 
# otherwise, mails it to user. 
echo "$1" I { write "$2" II mail "$2" ;} 

7-63 



XENIX User's Guide 

This procedure illustrates the use of command grouping. The message 
specified by $1 is piped to both the write command and, if write fails, to the 
mail command. 

7.15 Shell Grammar 

item: word 
input-output 
name = value 

simple-command: item 
simple-command item 

command: simple-command 

7-64 

( command-list ) 
{ command-list } 
for name do command-list done 
for name in word do command-list done 
while command-list do command-list done 
until command-list do command-list done 
case word in case-part esac 
if command-list then command-list else-part fi 



pipeline: 

andor: 

command 
pipeline I command 

pipeline 
andor && pipeline 
andor II pipeline 

/ 

command-list: andor 
command-list ; 
command-list & 
command-list ; andor 
command-list & andor 

input-output: > file 
< file 
« word 
» file 
digit> file 
digit < file 
digit »file 

file: word 
& digit 
&-

case-part: pattern) command-list ;; 

pattern: word 
pattern I word 

else-part: elif command-list then command-list else-part 
else command-list 

empty: 

word: 

name: 

digit: 

empty 

a sequence of nonblank characters 

a sequence of letters, digits, or underscores 
starting with a letter 

0123456789 

The Shell 

7-65 



XENIX User's Guide 

Metacharacters and Reserved Words 

1. Syntactic 

I 
&& 
II 

" & 
( ) 
< 
« 
> 
» 
# 

2. Patterns 

* 
? 
[ ... ] 

3. Substitution 

Pipe symbol 
And-if symbol 
Or-if symbol 
Command separator 
Case delimiter 
Background commands 
Command grouping 
Input redirection 
Input from a here document 
Output creation 
Output append 
Comment to end ofline 

Match any character(s) including none 
Match any single character 
Match any of enclosed characters 

${ ••• } Substitute shell variable 
Substitute command output 

7-66 



4. Quoting 

\ 

" " 

The Shell 

Quote next character as literal with no special meaning 
Quote enclosed characters excepting the back quota­
tion marks (") 
Quote enclosed characters excepting: $" \" 

5. Reserved words 

if esac 
then for 
else while 
elif until 
fi do 
case done 
in {} 

7-67 





Chapter 8 

The C-Shell 

8.1 Introduction 8-1 

8.2 Invoking the C-shell 8-1 

8.3 Using Shell Variables 8-2 

8.4 U sing the C-Shell History List 

8.5 U sing Aliases 8-7 

8.6 Redirecting Input and Output 

8-5 

8-8 

8.7 Creating Background and Foreground Jobs 

8.8 U sing Built-In Commands 8-10 

8.9 Creating Command Scripts 8-12 

8.10 UsingtheargvVariable 8-12 

8.11 Substituting Shell Variables 8-13 

8 .12 Using Expressions 8-15 

8 .13 Using the C-Shell: A Sample Script 8-16 

8 .14 Using Other Control Structures 8-19 

8.15 SupplyingInputtoCommands 8-20 

8.16 Catching Interrupts 8-21 

8.17 UsingOtherFeatures 8-21 

8.18 Starting a Loop at a Terminal 8-21 

8-9 



8.19 Using Braces with Arguments 8-23 

8.20 Substituting Commands 8-23 

8.21 Special Characters 8-24 



8.1 Introduction 

The C-shell program, csh, is a command language interpreter for XENIX 
system users. The C-shell, like the standard XENIX shell sh, is an inter­
face between you and the XENIX commands and programs. It translates 
command lines entered at a terminal into corresponding system actions, 
gives you access to information, such as your login name, home directory, 
and mailbox, and lets you construct shell procedures for automating sys­
tem tasks. 

This appendix explains how to use the C-shell. It also explains the syntax 
and function of C-shell commands and features, and shows how to use 
these features to create shell procedures. The C-shell is fully described in 
csh (C) in the XENIX User's Reference. 

8.2 Invoking the C-shell 

You can invoke the C-shell from another shell by using the csh command. 
To invoke the C-shell, enter: 

csh 

at the standard shell's command line. You can also direct the system to 
invoke the C-shell for you when you log in. If you have given the C-shell as 
your login shell in your letclpasswd file entry, the system automatically 
starts the shell when you log in. 

After the system starts the C-shell, the shell searches your home directory for 
the command files .cshrc and .login. If the shell finds the files, it executes the 
commands contained in them, then displays the C-shell prompt. 

The .cshrc file typically contains the commands you wish to execute each 
time you start a C-shell, and the .login file contains the commands you wish 
to execute after logging in to the system. For example, the following is the 
contents of a typical .login file: 

set ignoreeof 
set mail=(/usr/spool/mail/bill) 
set time=15 
set history=10 
mail 

This file contains several set commands. The set command is executed 
directly by the C-shell; there is no corresponding XENIX program for this 
command. Set sets the C-shell variable "ignoreeof" which shields the C-

8-1 



XENIX User's Guide 

shell from logging out if Ctrl-d is hit. Instead of Ctrl-d, the logout command 
is used to log out of the system. By setting the' 'mail" variable, the C-shell is 
notified that it is to watch for incoming mail and notify you if new mail 
arrives. 

Next the C-shell variable' 'time" is set to 15 causing the C-shell to automati­
cally print out statistics lines for commands that execute for at least 15 
seconds of CPU time. The variable "history" is set to 1 0 indicating that the 
C-shell will remember the last 10 commands typed in its history list, 
(described later). 

Finally, the XENIX mail program is invoked. 

When the C-shell finishes processing the .login file, it begins reading com­
mands from the terminal, prompting for each with: 

% 

When you log out (by giving the logout command) the C-shell prints: 

logout 

and executes commands from the file .logout if it exists in your home direc­
tory. After that, the C-shell terminates and XENIX logs you off the system. 

8.3 Using Shell Variables 

The C-shell maintains a set of variables. For example, in the above discus­
sion, the variables "history" and "time" had the values 10 and 15. Each C­
shell variable has as its value an array of zero or more strings. C-shell vari­
abIes may be assigned values by the set command, which has several forms, 
the most useful of which is: 

set name = value 

C-shell variables may be used to store values that are to be used later in com­
mands through a substitution mechanism. The C-shell variables most com­
monly referenced are, however, those that the C-shell itself refers to. By 
changing the values of these variables you can directly affect the behavior of 
the C-shell. 

One ofthe most important variables is "path". This variable contains a list 
of directory names. When you enter a command name at your terminal, the 
C-shell examines each named directory in tum, until it finds an executable 
file whose name corresponds to the name you entered. The set command 

8-2 



with no arguments displays the values of all variables currently defined in 
the C-shell. 

The following example file shows typical default values: 

argv () 
home lusr/bill 
path (. Ibin lusr/bin) 
prompt 
shell 
status 

% 
Ibin/csh 
o 

This output indicates that the variable' 'path" begins with the current direc­
tory indicated by dot ( .), then Ibin, and lusrlbin. Your own local commands 
may be in the current directory. Normal XENIX commands reside in Ibin and 
lusrlbin. 

Sometimes a number of locally developed programs reside in the directory 
lusrllocal. If you want all C-shells that you invoke to have access to these 
new programs, place the command: 

set path=(. /bin /usr/bin /usr/local) 

in the .cshrc file in your home directory. Try doing this, then logging out and 
back in. Enter: 

set 

to see that the value assigned to' 'path" has changed. 

You should be aware that when you log in the C-shell examines each direc­
tory that you insert into your path and determines which commands are con­
tained there, except for the current directory which the C-shell treats spe­
cially. This means that if commands are added to a directory in your search 
path after you have started the C-shell, they will not necessarily be found. If 
you wish to use a command which has been added after you have logged in, 
you should give the command: 

rehash 

to the C-shell. rehash causes the shell to recompute its internal table of com­
mand locations, so that it will find the newly added command. Since the C­
shell has to look in the current directory on each command anyway, placing it 
at the end of the path specification usually works best and reduces overhead. 

8-3 



XENIX User's Guide 

Other useful built in variables are "home" which shows your home direc­
tory, and' 'ignoreeof" which can be set in your .login file to tell the C-shell 
not to exit when it receives an end-of-file from a terminal. The variable 
"ignoreeof" is one of several variables whose value the C-shell does not 
care about; the C-shell is only concerned with whether these variables are set 
orunset. Thus, to set' 'ignoreeof" you simply enter: 

set ignoreeof 

and to unset it enter: 

unset ignoreeof 

Some other useful built-in C-shell variables are "noclobber" and "mail' '. 

The syntax: 

>filename 

which redirects the standard output of a command just as in the regular shell, 
overwrites and destroys the previous contents of the named file. In this way, 
you may accidentally overwrite a file which is valuable. If you prefer that the 
C-shell not overwrite files in this way you can: 

set noclobber 

in your .login file. Then entering: 

date> now 

causes an error message if the file now already exists. You can enter: 

date >! now 

if you really want to overwrite the contents of now. The ">!" is a special 
syntax indicating that overwriting or" clobbering" the file is ok. (The space 
between the exclamation point (!) and the word "now" is critical here, as 
" !now" would be an invocation of the history mechanism, described below, 
and have a totally different effect.) 

8-4 



The C-Shell 

8.4 Using the C-Shell History List 

The C-shell can maintain a history list into which it places the text of pre vi­
ous commands. It is possible to use a notation that reuses commands, or 
words from commands, in fonning new commands. This mechanism can be 
used to repeat previous commands or to correct minor typing mistakes in 
commands. 

The following figure gives a sample session involving typical usage of the 
history mechanism of the C-shell. Boldface indicates user input: 

% cat bug.c 
main () 
{ 

printf ("hello) ; 
} 
% cc !$ 
cc bug.c 
bug. c (4) : error 1: newline in constant 
% ed !$ 
ed bug.c 
28 
3s/) ; /"&/p 

printf ("hello") ; 
w 
29 
q 
% !c 
cc bug.c 
% a.out 
hello% !e 
ed bug.c 
29 
3s/10/10\\n/p 

printf("hello\n") ; 
w 
31 
q 
% !c -0 bug 
cc bug.c -0 bug 
% size a.out bug 
a.out: 5124 + 614 + 1254 = 6692 = Ox1b50 
bug: 5124 + 616 + 1252 = 6692 = Ox1b50 
% ls -1 !* 
Is -1 a.out bug 
-rwxr-xr-x 1 bill 7648 Dec 19 09:41 a.out 
-rwxr-xr-x 1 bill 7650 Dec 19 09: 42 bug 
% bug 
hello 
% pr bug.c I 1pt 
Ipt: Command not found. 
% ~lpt~lpr 
pr bug.c I Ipr 
% 

Figure 8-1: Sample History Session 

8-5 



XENIX User's Guide 

In this example, we have a very simple C program that has a bug or two in the 
file bug.c, which we cat out on our terminal. We then try to run the C compiler 
on it, referring to the file again as "! $' " meaning the last argument to the pre­
vious command. Here the exclamation mark (!) is the history mechanism 
invocation metacharacter, and the dollar sign ($) stands for the last argu­
ment, by analogy to the dollar sign in the editor which stands for the end-of­
line. 

The C-shell echoed the command, as it would have been typed without use of 
the history mechanism, and then executed the command. The compilation 
yielded error diagnostics, so we now edit the file we were trying to compile, 
fix the bug, and run the C compiler again, this time referring to this command 
simply as "lc", which repeats the last command that started with the letter 
"c". 

If there were other commands beginning with the letter "c" executed 
recently, we could have said" lec" or even" !cc:p" which prints the last 
command starting with "cc" without executing it, so thai you can check to 
see whether you really want to execute a given command. 

After this recompilation, we ran the resulting a.out file, and then noting that 
there still was a bug, ran the editor again. After fixing the program we ran the 
C compiler again, but tacked onto the command an extra "-0 bug' , telling the 
compiler to place the resultant binary in the file bug rather than a.out. In gen­
eral, the history mechanisms may be used anywhere in the formation of new 
commands, and other characters may be placed before and after the substi­
tuted commands. 

We then ran the size command to see how large the binary program images 
we have created were, and then we ran an "Is -1" command with the same 
argument list, denoting the argument list: 

1* 

Finally, we ran the program bug to see that its output is indeed correct. 

To make a listing of the program, we ran the pr command on the file bug.c. In 
order to print the listing at a lineprinter we piped the output to Ipr, but 
misspelled it as "lpt' '. To correct this we used a C-shell substitute, placing 
the old text and new text between caret C) characters. This is similar to the 
substitute command in the editor. Finally, we repeated the same command 
with: 

!! 

and sent its output to the lineprinter. 

8-6 



The C-Shell 

There are other mechanisms available for repeating commands. The history 
command prints out a numbered list of previous commands. You can then 
refer to these commands by number. There is a way to refer to a previous 
command by searching for a string which appeared in it, and there are other, 
less useful, ways to select arguments to include in a new command. A com­
plete description of all these mechanisms is given in csh (C) the XENIX 
User's Reference. 

8.5 Using Aliases 

The C-shell has an alias mechanism that can be used to make transformations 
on commands immediately after they are input. This mechanism can be used 
to simplify the commands you enter, to supply default arguments to com­
mands, or to perform transformations on commands and their arguments. 
The alias facility is similar to a macro facility. Some of the features obtained 
by aliasing can be obtained also using C-shell command files, but these take 
place in another instance of the C-shell and cannot directly affect the current 
C-shell's environment or involve commands such as cd which must be done 
in the current C-shell. 

For example, suppose there is a new version of the mail program on the sys­
tem called newmail that you wish to use instead of the standard mail program 
mail. If you place the C-shell command 

alias mail newmail 

in your .cshrc file, the C-shell will transform an input line of the form: 

mail bill 

into a call on newmail. Suppose you wish the command Is to always show 
sizes of files, that is, to always use the -s option. In this case, you can use the 
alias command to do: 

alias Is Is -s 

or even: 

alias dir Is -s 

creating a new command named dir. If we then enter: 

dir Dill 

8-7 



XENIX User's Guide 

the C-shell translates this to: 

Is -s /usr/bill 

Note that the tilde C) is a special C-shell symbol that represents the user's 
home directory. 

Thus the alias command can be used to provide short names for commands, 
to provide default arguments, and to define new short commands in terms of 
other commands. It is also possible to define aliases that contain multiple 
commands or pipelines, showing where the arguments to the original com­
mand are to be substituted using the facilities of the history mechanism. 

Thus the definition: 

alias cd 'cd \!* ; Is ' 

specifies an Is command after each cd command. We enclosed the entire 
alias definition in single quotation marks ( ') to prevent most substitutions 
from occurring and to prevent the semicolon (;) from being recognized as a 
metacharacter. The exclamation mark (!) is escaped with a backs lash (\) to 
prevent it from being interpreted when the alias command is entered. The 
"\!*" here substitutes the entire argument list to the prealiasing cd com­
mand; no error is given if there are no arguments. The semicolon separating 
commands is used here to indicate that one command is to be done and then 
the next. Similarly the following example defines a command that looks up 
its first argument in the password file. 

alias whois 'grep \r /etc/passwd' 

The C-shell currently reads the .cshrc file each time it starts up. If you place a 
large number of aliases there, C-shells will tend to start slowly. You should 
try to limit the number of aliases you have to a reasonable number (10 or 15 is 
reasonable). Too many aliases causes delays and makes the system seem 
sluggish when you execute commands from within an editor or other pro­
grams. 

8.6 Redirecting Input and Output 

In addition to the standard output, commands also have a diagnostic output 
that is normally directed to the terminal even when the standard output is 
redirected to a file or a pipe. It is occasionally useful to direct the diagnostic 
output along with the standard output. For instance, if you want to redirect 
the output of a long running command into a file and wish to have a record of 
any error diagnostic it produces you can enter: 

8-8 



The C-Shell 

command > & file 

The' '> &" here tells the C-shell to route both the diagnostic output and the 
standard output into file. Similarly you can give the command: 

command I & Ipr 

to route both standard and diagnostic output through the pipe to the line­
printer. The form: 

command >&! file 

is used when' 'noc1obber" is set andfile already exists. Finally, use the form: 

command » file 

to append output to the end of an existing file. If' 'noc1obber" is set, then an 
errorresults iffile does not exist, otherwise the C-shell creates file. The form: 

command »! file 

lets you append to a file even if it does not exist and "noc1obber" is set. 

8.7 Creating Background and Foreground Jobs 

When one or more commands are entered together as a pipeline or as a 
sequence of commands separated by semicolons, a single job is created by 
the C-shell consisting of these commands together as a unit. Single com­
mands without pipes or semicolons create the simplest jobs. Usually, every 
line entered to the C-shell creates ajob. Each of the following lines creates a 
job: 

sort < data 
Is -s I sort -n I head -5 
mail harold 

If the ampersand metacharacter (&) is entered at the end of the commands, 
then the job is started as a background job. This means that theC-shell does 
not wait for the job to finish, but instead, immediately prompts for another 
command. The job runs in the background at the same time that normal jobs, 
called foreground jobs, continue to be read and executed by the C-shell. 
Thus: 

du > usage & 

8-9 



XENIX User's Guide 

runs the du program, which reports on the disk usage of your working direc­
tory, puts the output into the file usage and returns immediately with a 
prompt for the next command without waiting for du to finish. The du pro­
gram continues executing in the background until it finishes, even though 
you can enter and execute more commands in the mean time. Background 
jobs are unaffected by any signals from the keyboard such as the INTER­
RUPT or QUIT signals. 

The kill command terminates a background job immediately. Normally, this 
is done by specifying the process number of the job you want killed. Process 
numbers can be found with the ps command. 

8.8 Using Built-In Commands 

This section explains how to use some of the built-in C-shell commands. 

The alias command described above is used to assign new aliases and to 
display existing aliases. If given no arguments, alias prints the list of current 
aliases. It may also be given one argument, such as to show the current alias 
for a given string of characters. For example: 

alias Is 

prints the current alias for the string' 'Is' '. 

The history command displays the contents ofthe history list. The numbers 
given with the history events can be used to reference previous events that 
are difficult to reference contextually. There is also a C-shell variable named 
, 'prompt' '. By placing an exclamation point (!) in its value the C-shell will 
substitute the number of the current command in the history list. You can use 
this number to refer to a command in a history substitution. For example, you 
could enter: 

set prompt=\! % / 

Note that the exclamation mark (!) had to be escaped here even within back 
quotes. 

The logout command is used to terminate a login C-shell that has 
"ignoreeof' ' set. 

The rehash command causes the C-shell to recompute a table of command 
locations. This is necessary if you add a command to a directory in the 
current C-shell' s search path and want the C-shell to find it, since otherwise 
the hashing algorithm may tell the C-shell that the command wasn't in that 
directory when the hash table was computed. 

8-10 



The C-Shell 

The repeat command is used to repeat a command several times. Thus to 
make 5 copies of the file one in the file five you could enter: 

repeat 5 cat one > > five 

The setenv command can be used to set variables in the environment. Thus: 

setenv TERM adm3a 

sets the value ofthe environment variable "TERM" to "adm3a". The pro­
gram env exists to print out the environment. For example, its output might 
look like this: 

HOME=/usr/bill 
SHELL=/bin/csh 
PATH=:/usr/ucb:/bin:/usr/bin:/usr/local 
TERM=adm3a 
USER=bill 

The source command is used to force the current C-shell to read commands 
from a file. Thus: 

source .cshrc 

can be used after editing in a change to the .cshrc file that you wish to take 
effect before the next time you login. 

The time command is used to cause a command to be timed no matter how 
much CPU time it takes. Thus: 

time cp /etc/rc /usr/bill/rc 

displays: r O.Ou 
O.ls 0:01 8% 

8-11 



XENIX User's Guide 

Similarly: 

time wc /etc/rc /usr/bill/rc 

displays: 

52 178 1347/etc/rc 
52 178 1347/usr/bill/rc 

104 356 2694 total 
O.lu O.ls 0:00 13% 

This indicates that the cp command used a negligible amount of user time (u) 
and about Ijl0th of a second system time (s); the elapsed time was 1 second 
(0:01). The word count command wc used 0.1 seconds of user time and 0.1 
seconds of system time in less than a second of elapsed time. The percentage 
"13%" indicates that over the period when it was active the wc command 
used an average of 13 percent of the available CPU cycles of the machine. 

The unalias and unset commands are used to remove aliases and variable 
definitions from the C-shell. 

8.9 Creating Command Scripts 

It is possible to place commands in files and to cause C-shells to be invoked 
to read and execute commands from these files, which are called C-shell 
scripts. This section describes the C-shell features that are useful when 
creating C-shell scripts. 

8.10 Using the argv Variable 

A csh command script may be interpreted by saying: 

csh script argument ... 

where script is the name of the file containing a group of C-shell commands 
and argument is a sequence of command arguments. The C-shell places 
these arguments in the variable "argv" and then begins to read commands 
from script. These parameters are then available through the same mechan­
isms that are used to reference any other C-shell variables. 

8-12 



The C-Shell 

If you make the file script executable by doing: 

chmod 755 script 

or: 

chmod +x script 

and then place a C-shell comment at the beginning ofthe C-shell script (i.e., 
begin the file with a number sign (#)) then Ihinlcsh will automatically be 
invoked to execute script when you enter: 

script 

If the file does not begin with a number sign (#) then the standard shell Ihinl sh 
will be used to execute it. 

8.11 Substituting Shell Variables 

After each input line is broken into words and history substitutions are done 
on it, the input line is parsed into distinct commands. Before each command 
is executed a mechanism known as variable substitution is performed on 
these words. Keyed by the dollar sign ($), this substitution replaces the 
names of variables by their values. Thus: 

echo $argv 

when placed in a command script would cause the current value of the vari­
able' 'argv" to be echoed to the output of the C-shell script. It is an error for 
, 'argv' , to be unset at this point. 

A number of notations are provided for accessing components and attributes 
of variables. The notation: 

$?name 

expands to I if name is set or to 0 if name is not set. It is the fundamental 
mechanism used for checking whether particular variables have been 
assigned values. All other forms of reference to undefined variables cause 
errors. 

The notation: 

$#name 

8-13 



XENIX User's Guide 

expands to the number of elements in the variable "name". To illustrate, 
examine the following terminal session (input is in boldface): 

% set argv= (a b c) 
% echo $?argv 
1 
% echo $#argv 
3 
% unset argv 
% echo $?argv 

% echo $argv 
Undefined variable: argv. 
% 

It is also possible to access the components of a variable that has several 
values. Thus: 

$argv[l] 

gives the first component of" argv" or in the example above" a". Similarly: 

$argv[$#argv] 

would give" c". Other notations useful in C-shell scripts are: 

$n 

where n is an integer. This is shorthand for: 

$argv[ n ] 

the n'th parameter and: 

$* 

which is a shorthand for: 

$argv 

The form: 

$$ 

expands to the process number of the current C-shell. Since this process 
number is unique in the system, it is often used in the generation of unique 
temporary filenames. 

8-14 



The C-Shell 

One minor difference between' '$n" and "$argv[n]" should be noted here. 
The form: "$argv[n]" will yield an error if n is not in the range l-$#argv 
while' '$n" will never yield an out-of-range subscript error. This is for com­
patibility with the way older shells handle parameters. 

Another important point is that it is never an error to give a subrange of the 
form: "n-"; if there are less than "n" components of the given variable then 
no words are substituted. A range of the form: "m-n" likewise returns an 
empty vector without giving an error when' 'm" exceeds the number of ele­
ments of the given variable, provided the subscript' 'n" is in range. 

8.12 Using Expressions 

To construct useful C-shell scripts, the C-shell must be able to evaluate 
expressions based on the values of variables. In fact, all the arithmetic opera­
tions of the C language are available in the C-shell with the same precedence 
that they have in C. In particular, the operations "==" and" !=" compare 
strings and the operators "&&" and "II" implement the logical AND and 
OR operations. 

The C-shell also allows file inquiries of the form: 

-? filename 

where question mark (?) is replaced by a number of single characters. For 
example, the expression primitive: 

-e filename 

tells whether filename exists. Other primitives test for read, write and exe­
cute access to the file, whether it is a directory, or if it has nonzero length. 

It is possible to test whether a command terminates normally, by using a 
primitive of the form: 

{ command} 

which returns 1 if the command exits normally with exit status 0, or ° if the 
command terminates abnormally or with exit status nonzero. If more 
detailed information about the execution status of a command is required, it 
can be executed and the "status" variable examined in the next command. 
Since" $ status " is set by every command, its value is always changing. 

8-15 



XENIX User's Guide 

For the full list of expression components, see csh(C) in the XENIX User's 
Reference. 

8.13 Using the C-Shell: A Sample Script 

A sample C-shell script follows that uses the expression mechanism of the 
C-shell and some of its control structures: 

# 
# Copyc copies those C programs in the specified list 
# to the directory -/backup if they differ from the files 
# already in -/backup 
# 
set noglob 
foreach i ($argv) 

end 

if ($i != *.c) continue # not a .c file so do nothing 

if (! -r -/backup/$i:t) then 

endif 

echo $i:t not in backup ... not cp\' ed 
continue 

cmp -s $i -/backup/$i:t # to set $status 

if ($status != 0) then 

endif 

echo new backup of $i 
cp $i -/backup/$i:t 

This script uses the foreach command, which iteratively executes the group 
of commands between the foreach and the matching end statements for each 
value of the variable "i". I f you want to look more closely at what happens 
during execution of a foreach loop, you can use the debug command break 
to stop execution at any point and the debug command continue to resume 
execution. The value of the iteration variable (i in this case) will stay at 
whatever it was when the last foreach loop was completed. 

The' 'noglob" variable is set to prevent filename expansion of the members 
of" argv". This is a good idea, in general, if the arguments to a C-shell script 
are filenames which have already been expanded or if the arguments may 
contain filename expansion metacharacters. It is also possible to quote each 
use of a "$" variable expansion, but this is harder and less reliable. 

8-16 



The other control construct is a statement of the fonn: 

if ( expression ) then 
command 

endif 

The C-Shell 

The placement of the keywords in this statement is not flexible due to the 
current implementation of the C-shell. The following two formats are not 
acceptable to the C-shell: 

and: 

if ( expression ) # Won't work! 
then 

command 

endif 

if (expression) then command endif # Won't work 

The C-shell does have another fonn of the if statement: 

if ( expression ) command 

which can be written: 

if ( expression ) \ 
command 

Here we have escaped the newline for the sake of appearance. The command 
must not involve" I", "&" or ";" and must not be another control com­
mand. The second form requires the final backslash (\) to immediately pre­
cede the end-of-line. 

8-17 



XENIX User's Guide 

The more general if statements above also admit a sequence of else -if pairs 
followed by a single else and an endif, for example: 

if ( expression ) then 
commands 

else if ( expression ) then 
commands 

else 
commands 

endif 

Another important mechanism used in C-shell scripts is the colon (:) 
modifier. We can use the modifier :r here to extract the root of a filename or 
:e to extract the extension. Thus if the variable "i" has the value 
Imntlfoo.bar then 

echo $i $i:r $i:e 

produces: 

/mnt/foo.bar /mnt/foo bar 

This example shows how the: r modifier strips off the trailing ". bar" and the 
:e modifier leaves only the "bar". Other modifiers take off the last com­
ponent of a pathname leaving the head :h or all but the last component of a 
pathname leaving the tail :1. These modifiers are fully described in the 
csh(C) page in theXENIXUser' sReference. Itis also possible to use the com­
mand substitution mechanism to perform modifications on strings to then 
reenter the C-shell environment. Since each usage of this mechanism 
involves the creation of a new process, it is much more expensive to use than 
the colon (:) modification mechanism. It is also important to note that the 
current implementation of the C-shelllimits the number of colon modifiers 
on a "$" substitution to 1. Thus: 

% echo $i $i:h:t 

produces: 

/a/b/c /a/b:t 

and does not do what you might expect. 

Finally, we note that the number sign character (#) lexically introduces a C­
shell comment in C-shell scripts (but not from the terminal). All subsequent 
characters on the input line after a number sign are discarded by the C-shell. 

8-18 



The C-Shell 

This character can be quoted using "/" or "\" to place it in an argument 
word. 

8.14 Using Other Control Structures 

The C-shell also has control structures while and switch similar to those of 
C. These take the forms: 

and: 

while ( expression) 
commands 

end 

switch ( word) 

case str1: 
commands 
breaksw 

case stm: 
commands 
breaksw 

default: 
commands 
breaksw 

endsw 

For details see the manual section for csh(C). C programmers should note 
that we use breaksw to exit from a switch while break exits a while or 
foreach loop. A common mistake to make in C-shell scripts is to use break 
rather than breaksw in switches. 

Finally, the C-shell allows a goto statement, with labels looking like they do 
inC: 

loop: 
commands 
go to loop 

8-19 



XENIX User's Guide 

8.15 Supplying Input to Commands 

Commands run from C-shell scripts receive by default the standard input of 
the C-shell which is running the script. It allows C-shell scripts to fully parti­
cipate in pipelines, but mandates extra notation for commands that are to 
take inline data. 

Thus we need a metanotation for supplying inline data to commands in C­
shell scripts. For example, consider this script which runs the editor to delete 
leading blanks from the lines in each argument file: 

#deblank -- remove leading blanks 
foreach i ($argv) 
ed - $i « / EOF/ 
l,$s([ ]*// 
w 
q 
/EOF/ 
end 

The notation: 

means that the standard input for the ed command is to come from the text in 
the C-shell script file up to the next line consisting of exactly EOF. The fact 
that the EOF is enclosed in single quotation marks ( /), i.e., it is quoted, 
causes the C-shell to not perform variable substitution on the intervening 
lines. In general, if any part of the word following the "«" which the C­
shell uses to terminate the text to be given to the command is quoted then 
these substitutions will not be performed. In this case since we used the form 
, , 1,$ " in our editor script we needed to insure that this dollar sign was not 
variable substituted. We could also have insured this by preceding the dollar 
sign ($) with a backslash (\),i.e.: 

1,\$s([ J*// 

Quoting the EOF terminator is a more reliable way of achieving the same 
thing. 

8-20 



The C-Shell 

8.16 Catching Interrupts 

If our C-shell script creates temporary files, we may wish to catch interrup­
tions of the C-shell script so that we can clean up these files. We can then do: 

onintr label 

where label is a label in our program. If an interrupt is received the C-shell 
will do a "goto label' , and we can remove the temporary files, then do an exit 
command (which is built in to the C-shell) to exit from the C-shell script. If 
we wish to exit with nonzero status we can write: 

exit (1) 

to exit with status 1. 

8.17 Using Other Features 

There are other features of the C-shell useful to writers of C-shell pro­
cedures. The verbose and echo options and the related -v and -x command 
line options can be used to help trace the actions of the C-shell. The -n option 
causes the C-shell only to read commands and not to execute them and may 
sometimes be of use. 

One other thing to note is that the C-shell will not execute C-shell scripts that 
do not begin with the number sign character (#), that is C-shell scripts that do 
not begin with a comment. 

There is also another quotation mechanism using the double quotation mark 
C), which allows only some of the expansion mechanisms we have so far dis­
cussed to occur on the quoted string and serves to make this string into a sin­
gle word as the single quote ( / ) does. 

8.18 Starting a Loop at a Terminal 

It is occasionally useful to use the foreach control structure at the terminal to 
aid in performing a number of similar commands. For instance, if there were 
three shells in use on a particular system, Ibinlsh, Ibinlnsh, and Ibinlcsh, you 
could count the number of persons using each shell by using the following 
commands: 

grep -c csh$ /etc/passwd 
grep -c nsh$ /etc/passwd 
grep -c -v sh$ /etc/passwd 

8-21 



XENIX User's Guide 

Because these commands are very similar we can use for each to simplify 
them: 

$ foreach i ('sh$' 'csh$' '-v sh$ ') 
? grep -c $i /etc/passwd 
? end 

Note here that the C-shell prompts forinput with' '? " when reading the body 
of the loop. This occurs only when the foreach command is entered interac­
tively. 

Also useful with loops are variables that contain lists of filenames or other 
words. For example, examine the following terminal session: 

% set a=(' Is') 
% echo $a 
csh. n csh. rm 
% Is 
csh.n 
csh.rm 
% echo $#a 
2 

The set command here gave the variable" a" a list of all the filenames in the 
current directory as value. We can then iterate over these names to perform 
any chosen function. 

The output of a command within back quotation marks (" ) is converted by 
the C-shell to a list of words. You can also place the quoted string within dou­
ble quotation marks (") to take each (nonempty) line as a component of the 
variable. This prevents the lines from being split into words at blanks and 
tabs. A modifier :x exists which can be used later to expand each component 
of the variable into another variable by splitting the original variable into 
separate words at embedded blanks and tabs. 

8-22 



The C-Shell 

8.19 Using Braces with Arguments 

Another form of filename expansion involves the characters, "{" and "} , '. 
These characters specify that the contained strings, separated by commas (,) 
are to be consecutively substituted into the containing characters and the 
results expanded left to right. Thus: 

A {strl ,str2, ... stm} B 

expands to: 

AstrlB Astr2B ... AstmB 

This expansion occurs before the other filename expansions, and may be 
applied recursively (i.e., nested). The results of each expanded string are 
sorted separately, left to right order being preserved. The resulting filenames 
are not required to exist if no other expansion mechanisms are used. This 
means that this mechanism can be used to generate arguments which are not 
filenames, but which have common parts. 

A typical use of this would be: 

mkdir ~ / {hdrs,retrofit,csh} 

to make subdirectories hdrs, retrofit and csh in your home directory. This 
mechanism is most useful when the common prefix is longer than in this 
example: 

chown root /usr/demo/{filel,file2, ... } 

8.20 Substituting Commands 

A command enclosed in accent symbols (') is replaced, just before 
filenames are expanded, by the output from that command. Thus, it is possi­
ble to do: 

set pwd= 'pwd' 

to save the current directory in the variable' 'pwd" orto do: 

vi 'grep -1 TRACE *.c' 

to run the editor vi supplying as arguments those files whose names end in 
which have the string' 'TRACE" in them. Command expansion also occurs 

8-23 



I 

XENIX User's Guide 

in input redirected with "«" and within quotation marks ("). Refer to 
csh( C) in the XENIX User's Reference for more information. 

8.21 Special Characters 

The following table lists the special characters of csh and the XENIX system. 
A number of these characters also have special meaning in expressions. See 
the csh manual section for a complete list. 

Syntactic metacharacters 

Separates commands to be executed sequentially 

Separates commands in a pipeline 

( ) Brackets expressions and variable values 

& Follows commands to be executed without waiting for comple­
tion 

Filename metacharacters 

/ Separates components of a file's pathname 

? 

* 
[ ] 

Separates root parts of a filename from extensions 

Expansion character matching any single character 

Expansion character matching any sequence of characters 

Expansion sequence matching any single character from a set of 
characters 

U sed at the beginning of a filename to indicate home directories 

{ } U sed to specify groups of arguments with common parts 

Quotation metacharacters 

\ Prevents meta-meaning of following single character 

Prevents meta-meaning of a group of characters 

Like', but allows variable and command expansion 

8-24 



The C-Shell 

Input/output metacharacters 

< Indicates redirected input 

> Indicates redirected output 

Expansion/Substitution Metacharacters 

$ Indicates variable substitution 

Indicates history substitution 

Precedes substitution modifiers 

U sed in special forms of history substitution 

Indicates command substitution 

Other Metacharacters 

# Begins scratch filenames; indicates C-shell comments 

Prefixes option (flag) arguments to commands 

8-25 





Chapter 9 

Using The Visual Shell 

9.1 What is the Visual Shell? 9-1 

9.2 Getting Started with the Visual Shell 9-2 
9.2.1 Entering the Visual Shell 9-2 
9.2.2 Getting Help 9-2 
9.2.3 Leaving the Visual Shell 9-2 

9.3 The Visual Shell Screen 9-3 
9.3.1 Status Line 9-3 
9.3.2 Message Line 9-3 
9.3.3 Main Menu 9-3 
9.3.4 Command Option Menu 9-3 
9.3.5 Program Output 9-4 
9.3.6 View Window 9-5 

9.4 Visual Shell Reference 9-7 
9.4.1 Visual Shell Default Menu 9-7 
9.4.2 Options 9-9 
9.4.3 Print 9-11 
9.4A Quit 9-11 
9.4.5 Run 9-11 
9.4.6 View 9-11 
9.4.7 Window 9-12 
9.4.8 Pipes 9-12 
9.4.9 Count 9-12 
9.4.10 Get 9-13 
9.4.11 Head 9-13 
9.4.12 More 9-13 
9.4.13 Run 9-13 
9.4.14 Sort 9-14 
9.4.15 Tail 9-14 





9.1 What is the Visual Shell? 

The visual shell, vsh, is a menu··driven XENIX shelL This chapter 
describes the use and behavior of the vsh. This chapter assumes that the 
reader is familiar with some general XENIX concepts, specifically the 
structure of XENIX filesystems and the nature ofaXENIX "command' '. 
No familiarity with any other shell, however, is assumed. If you are a 
first-time user of the visual shell, please completely read the narrative 
sections of this chapter. 

A "shell" is a program which passes a command to an operating system, 
and displays the result of running the command. The XENIX shells can 
also create "pipelines" for passing the output of one command to another 
command or "redirect' ' the output into a file. 

The other XENIX shells available are sh and csh. These shells are called 
"command-line oriented" shells. This means that the user enters com­
mands one line at a time. The sh and csh shells are full computer 
languages which require study and some programming knowledge to use 
effectively. These command-line shells are powerful and efficient. 

The vsh is a "menu-oriented" shelL In a menu-oriented shell, the user is 
given the available commands, or some of the available commands. The 
user can run the command, by selecting from the menu. 

The visual shell is a good shell for users who may not want to master a 
programming language right away just to use XENIX or a specfic XENIX 
application. All visual shell users should additionally become familiar 
with some command-line shell usage. 

Users familiar with command-line shells are in for a pleasant surprise if 
they try the visual shell. Experienced users will appreciate the efficiency 
and versatility of the visual shell. The distinction is very much akin to 
the difference between a line-oriented text editor and a full-screen editor. 

A menu shell can be used effectively with very little study. On the other 
hand, a menu shell can also restrict the user from using the operating sys­
tem in creative, possibly more efficient ways. The Microsoft visual shell 
strikes a balance in this regard. The visual shell is designed to do all of 
the things that the command-line shells can do. 

9-1 



XENIX User's Guide 

9.2 Getting Started with the Visual Shell 

This section describes how to enter, obtain help about, and leave the 
visual shell. This section also describes what you see on the screen while 
running the visual shell and how the menus work. 

Note the following convention for specifying keystrokes. Ctrl refers to 
the Ctrl key. Ctrl-C means pressing the Ctrl and "c" keys at the same 
time. Note the irrelevance of case in entering Menu Selection characters. 
For instance, press either Q or q to run the "Quit" command from the 
main menu. 

9.2.1 Entering the Visual Shell 

Log in to XENIX. If you are not sure how to log in, consult the System 
Administrator's Guide or have someone knowledgeable about XENIX 
help you. When you have a shell prompt (typically "$" or "%"), the 
operating system is waiting for a command. Enter the command: 

vsh 

and press RETURN. 

9.2.2 Getting Help 

If at anytime you are not sure what to do, either run the '"Help''' Menu 
Selection or press the question mark (? ), which is the "help key." Refer 
to the reference section of this chapter for information about the Help 
command. 

9.2.3 Leaving the Visual Shell 

To exit the visual shell select the Quit command from the main menu. 
The simplest way to do this is to simply press q or Q. In response to the 
prompt "Type Y to confirm", enter y or Y. If you don't want to exit the 
visual shell yet (perhaps you pressed "q" by mistake), enter any other 
character but "y" or "Y". If you have invoked the visual shell from 
another shell, as described above, you will need to log out from XENIX by 
entering Ctrl-D or logout and pressing RETURN. If the visual shell is 
your default shell, you will automatically be logged out. 

9-2 



Using The Visual Shell 

9.3 The Visual Shell Screen 

9.3.1 Status Line 

The bottom line on the screen is called the "status line". The status line 
displays the name of the current working directory, notifies you if you 
have mail, and gives the date, time and the name of the operating system. 

9.3.2 Message Line 

The line above the "status line" is called the "message line". The mes­
sage line displays special output from XENIX commands, such as error 
reports. 

9.3.3 Main Menu 

The next section of the screen above the message line is the "Main 
menu". The Main menu displays a selection of useful XENIX commands. 

The currently selected menu command is highlighted on the screen. To 
select any command, press the SPACE BAR. The next highlighted com­
mand is selected. The BACKSPACE key will move to the previous com­
mand. Move through the menu until you have found the command you 
want. To run the currently selected command, press RETURN. 

You may also enter the first letter of a command to select that command. 
If you enter the first letter of the command, you do not need to press 
RETURN. 

If you enter a letter which does not correspond to a menu selection, the 
message: 

Not a valid option 

is displayed. Try another option. 

9.3.4 Command Option Menu 

When you have selected a command, the main menu is replaced with a 
command option menu. The command option menu gives the options 
available with the specific command. You must fill in the options with 
appropriate responses. 

9-3 



XENIX User's Guide 

If you wish to return to the main menu without running the command, 
press Ctrl-C (cancel). If you want to run the command with the selected 
options press RETURN. 

The following keystrokes allow editing of option responses. 

CtrI-I, CtrI-A, or TAB Move to next field in options menu. 

CtrI-Y or DEL Delete character under cursor. 

CtrI-N Move cursor to character to right of 
current position in current option 
field. 

CtrI-B Move cursor to character to left of 
current position in current option 
field. 

CtrI-P Move cursor to word in current 
field to right of the current word. 

CtrI-O Move cursor to word in current 
field to left of the current word. 

9.3.5 Program Output 

While running a command, commands given and output (unless 
redirected) are displayed above the menu and below the view window. 
The output scrolls up: moves from bottom to top. Lines scrolling off the 
top of the output window disappear. 

Visual shell command lines are listed with each argument preceded by 
the number in the argument list enclosed in parentheses. The command is 
named in the output window by the menu command. Hence, if you run 
the command Ibin/ls with the argument -R, the output window will 
display the command line as follows: 

Run (1) /bin/ls (2) -R (3) 

To change the command line format to reflect the actual XENIX command 
line generated by the visual shell, use the Options Output menu com­
mand. 

9-4 



Using The Visual Shell 

9.3.6 View Window 

A menu of currently accessible files and directories can be displayed at 
the top of the screen in alphabetical order, left to right, top to bottom. 
Note that this display is the same as that obtained using the view com­
mand. This will be referred to as the "view window" in this chapter. If 
the directory list is larger than the current window size, you may scroll 
through using the key commands given below. To reset the window size, 
use the "Window" Main menu command. 

The currently selected item is highlighted in the view window. Use the 
arrow keys and other key commands given at the end of this section to 
move the highlight around the window. 

If a directory is being listed, subdirectories are shown enclosed in square 
brackets. To view a subdirectory, press = while the directory is 
highlighted. To return to the previous directory after viewing a subdirec­
tory, press -. The parent directory of the current directory is shown as 
"[ .. ]." The current directory is shown as "[.]." Executable files are pre­
ceded by an asterisk. The last modification date of the currently selected 
item is given at the right margin of the last line of the window. The name 
of the item in view in the current window is given in the upper right-hand 
corner of the window. 

The view window may also display contents of files'. Highlight a file, and 
press =. You may scroll through the file using the key commands given 
below. While viewing a file, the highlighted area covers one line. 

If you press' '=" while an executable file is highlighted, that file will be 
run. 

If the visual shell requires a file or directory name, the currently selected 
View Window item can be automatically entered in the relevant option 
field by pressing any directional movement key following selection of the 
command. This method saves keystrokes and reduces the chance of mak­
ing a mistake while entering a command. On the other hand, if you wish 
to enter a file or directory in an option field, enter in the name after select­
ing the command. 

9-5 



XENIX User's Guide 

Use these keystrokes to select files from the view window: 

WINDOW MOTION KEYS 

Ctrl-Q Move to start (first item alphabetically) of view window. 

Ctrl-Z Move to end (last item alphabetically) of view window. 

Ctrl-R Ctrl-E Scroll view window up. 

Ctrl-R Ctrl-S Scroll view window down. 

= View indicated item, either file or directory. If no view 
window is present, the current working directory is 
displayed. 

Return window display to parent directory of currently 
listed directory. If viewing a file, exit from viewing that 
file. Last view window is returned to. 

DIRECTIONAL MOVEMENT KEYS 

ARROW UP or Ctrl-E Move highlight up in view window. 

ARROW DOWN or Ctrl-X Move highlight down in view window. 

ARROW LEFT or Ctrl-S Move highlight left in view window. 

ARROW RIGHT or Ctrl-D Move highlight right in view window. 

Movement beyond the left or right margin will proceed to the next item 
on the previous or next line unless at the edge of the view window. 
Movement beyond the top or bottom edge of the current window will 
scroll the view window up or down if there are more items in that direc­
tion in the view window. 

Note that there are two ways to move the highlight around. Either use the 
keypad arrow keys or the cluster of four keys on the far left of the key­
board "e", "x", "s", and "d" shifted with "etrl" 

While viewing a file, the directional movement keys for up and left move 
the highlight up, and the keys for down and right move the highlighted 
line down. 

9-6 



Using The Visual Shell 

9.4 Visual Shell Reference 

9.4.1 Visual Shell Default Menu 

This section describes the default visual shell menu commands and 
options. The menu options are displayed at the bottom of the screen 
above the status line. 

To invoke a command, move the highlight forward through the main 
menu using the space bar or the tab key, or backwards using the back­
space key. Or simply press the first letter of the command. 

Most commands require entering options. Move the cursor to the field 
using the SPACE BAR, TAB key or BACKSPACE key, and enter your 
response. To edit the options, refer to the key commands listed above in 
the section in this chapter labeled "Command Option Menu". To select 
an item from a View Window listing for insertion in a field, refer to the 
section in this chapter labelled "View Window". 

Note that some options have "switches" with predefined (default) selec­
tions. The currently selected switch setting is highlighted. The default is 
the parenthesized setting. For instance, in the switch: 

Recursive: (yes) no 

the default is "recursive." To change a switch, select the field and press 
the SPACE BAR or BACKSPACE. 

Copy 

The Copy command can copy files and directories. To copy a file, select 
"File" from the options, to copy a directory, select "Directory". A sub­
menu then appears. Enter the file or directory you wish copied in the 
from: field. Enter the file or directory you wish copied to the to: field. 
Note that if the item in the to: field already exists, it is overwritten, so be 
careful. 

The Copy Directory sub-menu has a switch "recursive". If this switch is 
set to "yes," all sub-directories and their contents below the specified 
directory will be copied. 

9-7 



XENIX User's Guide 

Delete 

The Delete command can remove files and directories. In the DELETE 
name: field, enter the name of the file or directory you want to remove. 
Note that once the file or directory is deleted, the contents are per­
manently removed unless you have another copy, so be careful. 

Edit 

The Edit command invokes the full-screen editor vi. The current direc­
tory is displayed in the output window. Enter in the option field EDIT 
filename: the name of the file you wish to edit using vi. 

To learn vi, refer to "vi: a Text Editor" in the XENIX User's Guide, and 
the vi(C) manual page in the XENIX Reference. A vi reference card is 
also available. 

Help 

The Help command (also available by pressing? at any time), can give 
online help regarding many aspects of visual shell use. The view window 
displays the help file. Use the menu to select the topic you need help 
with. For instance, move the highlight to "Keyboard" using the SPACE 
BAR and press RETURN to view the help file starting at the "Keyboard" 
section. The "Next" and "Previous" fields in the menu will scroll 
through the the help file, from the present location, one screen at a time. 
Your work will remain undisturbed. To return from Help, press Ctrl-C or 
select the "Resume" menu option. 

Mail 

The Mail command enters the XENIX mail system. There are two 
options: "Send" and "Read" For more information about mail, refer to 
the section of the XENIX Users Guide titled "mail", or refer to the 
mail(C) manual page. 

9-8 



Using The Visual Shell 

Name 

The Name command renames an existing file or directory. There are two 
fields, From: and To:. Enter the name of the file or directory you want to 
rename in From: and the new name in To:. 

9.4.2 Options 

The Options Main Menu Selection provides four sub-menus. These sub­
menus run commands which are used infrequently, or which have irrevo­
cable results. 

Directory Option 

The Directory command has two sub-menus, Make and Usage. 

Make Directory Option: 

This command creates a new directory named what you enter in the 
name: field. 

Usage Directory Option: 

Counts the number of disk blocks in the directories specified in the name: 
field. The format is the same as the XENIX command duo Refer to the 
manual page du(C). 

FileSystem Option 

FileSystem has five sub-menus: Create, FilesCheck, SpaceFree, Mount 
and Unmount. 

Create FileSystem Option: 

Create FileSystem makes a XENIX filesystem. The Create command per­
forms radical system maintenance and may have irrevocable effects. Care 
is advised when using Create FileSystem. 

9-9 



XENIX User's Guide 

The functionality is the same as mkfs(ADM). Consult the mkfs(ADM) 
manual page before running Create FileSystem. Create FileSystem 
prompts you for device, block size, gap number and block number. Refer 
to the "Using Filesystems ' " chapter in the XENIX System Administrator's 
Guide, for information on creating file systems. 

FilesCheck FileSystem Option: 

FilesCheck checks the consistency ofaXENIX filesystem and attempts 
repair if damage is detected. The FilesCheck command performs radical 
system maintenance and may have irrevocable effects. Care is advised 
when using FilesCheck. 

The functionality is the same as fsck(ADM). Consult the fsck(ADM) 
manual page before running FilesCheck. FilesCheck prompts you for the 
device to check. 

Output Option: 

The Output Option command has one switch, commands like: VShell 
XENIX". The default is VShell. IF VShell is set, the vsh form of com­
mands given appear in the upward scrolling output window. If XENIX is 
specified, the XENIX command line which vsh generated is shown 
instead. 

Permissions Option 

The Permissions Option command allows changing the access permis­
sions on files and directories. The functionality is the same as the 
chmod(C) command. Consult the chmod manual page if you do not 
understand the concept of XENIX permissions. 

In the name: field enter the name of the file or directory you wish to alter 
the permissions on. You may only alter the permissions on files and 
directories you own. There are four switches, who:, read:, write:, and 
execute:. 

The who: switch has four settings, All, Me, Group and Others. All is the 
default. All refers to yourself, those with the same group id as yourself 
and others. Me refers to yourself. Group refers to all others with your 
group id. Others refers to those outside your group. 

9-10 



Using The Visual Shell 

The read:, write:, and execute: switches have two settings, "yes" and 
"no". The default is "yes" for Me, and "no" for Group and Others. 
This grants the given type of pennission to those specified in the who: 
switch. No takes away the given type of pennission from those specified 
in the who: switch. 

9.4.3 Print 

The Print command puts a file or files in the queue for your lineprinter. In 
the filename: option field, enter the file or files you want to print. 

9.4.4 Quit 

The Quit command exits the visual shell. The only option is Enter Y to 
confirm:. Enter Y or y if you really want to quit. Any other key cancels 
the quit. 

9.4.5 Run 

The Run command executes a program or shell script. The name: option 
takes the name of an executable file. In the parameters: option field 
enter flags to pass to the executable file. The output: option can specify a 
file to redirect output to, or another program to send the output to. Enter I 
(a vertical bar) in the output field to use the pipe menu. 

It is also possible to run an executable file by highlighting the name of the 
file in the View Window and pressing =. 

9.4.6 View 

The View command allows you to inspect without altering the contents of 
files and directories. View is also available at any time for an item 
highlighted in the View Window by pressing =. See the section above 
labelled "View Window" for the details of using View. 

To alter the height and characteristics of the View Window, use the 
"Window" menu option. See the section below labelled "Window." 

If you have invoked View from the menu, enter the name of the file or 
directory you wish to view in the VIEW name: field, or select from a 
directory view window. 

9-11 



XENIX User's Guide 

To return from any View action to the previously displayed View Win­
dow, press the minus key (-). 

If you View a non-executable binary file, non-ascii characters are 
displayed as the character '@'. 

9.4.7 Wj.ndow 

The Window command alters the height and redraw characteristics of the 
visual shell View Window. 

The 

WINDOW redraw: Yes (No) 

switch turns redraw of the view window on or off after running a com­
mand. 

The height in lines: field changes the number of lines displayed in the 
view window. The minimum window height is 1 line. The default win­
dow height is 5 lines. The maximum window height is 15 lines. 

9.4.8 Pipes 

XENIX allows output from one program to be passed to another program 
or to be put in a file. This is called 'piping' or 'pipelining'. If the output 
is placed in a file it is said to be 'redirected'. Piping is supported in the 
visual shell through the pipe menu. 

The Pipe menu is invoked by entering a vertical bar 'I' character in any 
option field named output:. For instance, the Run main menu and the 
Pipe menu itself have an output: field. The available Pipe menu com­
mands are Count, Get, Head, More, Run, Sort and Tail. Each Pipe menu 
sub-command also has an output: field, which allows construction of 
pipelines of arbitrary length. 

9.4.9 Count 

Count counts words, lines and characters in the input pipe. The default is 
all of the above. There is a switch for each type of item to count. The 
Count Pipe Menu option corresponds to the XENIX command wc. Con­
sult the manual page wc(C) for an explanation. 

9-12 



Using The Visual Shell 

9.4.10 Get 

Get looks for patterns in the input pipe. The pattern is specified in the 
GET lines containing field. The pattern may be verbatim, or you may 
specify a "regular expression" to look for. Regular expressions may con­
tain 'wildcard' characters which represent sets of strings. Consult the 
manual page grep(C), for the available wildcard characters. 

The first Get switch is Unmatched Yes (No). If you specify No (the 
default), all lines containing the given pattern will be output. If you 
specify Yes, all lines not containing the given pattern are output. 

The second Get switch is ignore case: which suppresses the case while 
looking for the regular expression. The default is off. 

The third Get switch is line numbers:, which reports the line in the input 
stream which the regular expression was matched on. The default is on. 

9.4.11 Head 

Head prints a specified number of lines of the input stream starting from 
the first line. The lines: field may be set to specify the number of lines at 
the head of the input stream to print. The default is 5 lines. 

The Head Pipe Menu option corresponds to the XENIX command head. 
Consult the manual page head(C) for an explanation. 

9.4.12 More 

More allows viewing an input stream one screen at a time. The More 
Pipe Menu option invokes the XENIX command more. Consult the 
manual page more(C) for an explanation. 

9.4.13 Run 

The Run Pipe Menu option allows the specification of any command not 
in the Pipe menu. The functionality is the same as the visual shell Main 
Menu Option "Run". 

9-13 



XENIX User's Guide 

9.4.14 Sort 

The XENIX sort utility can be invoked through the Sort Pipe menu option. 
The input stream is sorted. 

The first Sort switch is order: < >. Select '<', the default, to sort in 
ascending order. Select '>' to sort in descending order. 

The second Sort switch suppresses the case of characters in the sort. The 
default is off. 

The third Sort switch sorts the input stream assuming an initial numeric 
field is in the input stream. If this switch is off, initial numbers are sorted 
in ascii order, which means that a line beginning with' 10' will be output 
before the line beginning with '2'. The default is off. 

The fourth Sort switch sorts the input stream in alphabetical order, rather 
than ascii order. 

The Sort Pipe Menu option corresponds to the XENIX command sort. 
Consult the manual page sort(C) for an explanation. 

9.4.15 Tail 

Tail prints a specified number of lines of the input stream up to the end of 
the stream. The lines: field may be set to specify the number of lines to 
print. The default is 15 lines. 

The Tail Pipe Menu option corresponds to the XENIX command tail. 
Consult the manual page tail(C) for an explanation. 

9-14 



This page intentionally left blank. 





Index 

{ } command. See Braces command ({ }) 
: command. See Colon (:), command 
. command. See Dot (.), command 
! command. See escape command (!) 
/ command. See vi, slash (/) 
$# variable, argument recording 7-16 
$! variable, background process number 7-17 
$? variable, command exit status 7-16 
$- variable, execution flags 7-17 
$$ variable, process number 7-16 
o command. See vi 

A 

a command 
alias 4-16 
appending text 2-23 
ed use. See ed 
mail 4-16, 4-24, 4-41 
vi use. See vi 

A command, append at end ofline 2-23 
-a operator 7-45 
Addition. See bc 
Alias, C-shell 8-7 
alias list 4-16 
Ampersand (&) 

See also And-if operator (&&) 
background process 7-23, 7-66 
command list 7-23 
ed use. See ed 
INTERRUPT and QUIT immunity 7-24 
jobs to other computers 7-23 
metacharacter. See ed 
off-line printing 7-23 
use restraint 7-24 

And-if operator (&&) 
command list 7-23 
described 7-24 
designated 7-66 

Append' 
See also Insert 
ed procedure. See ed 
o~tput append symbol. See Output 
VI procedure 2-23 

Argument 

Argument (continued) 
filename 7-3 
list, creating 7-3 
mail commands 4-1 ° 
number checking, $# variable 7-16 
processing 7-21 
redirection argument, location 7-9 
shell, argument passing 7-21 
substitution sequence 7-22 
test command argument 7 -45 

Arithmetic, expr command effect 7-46 
Arithmetic. See bc 
askcc option. See mail 
asksubject option. See mail 
Asterisk (*) 

bc 
comment convention 6-15 

. multiplication operator symbol 6-2, 6-5 
dIrectory name, not used in 7-4 
mail 

character matching 4-8 
message saved, header notation 4-20, 4-22 

metacharacter 7 -3, 7-66 
pattern matching 7-3 
special shell variable 7-21 

At sign (@), mail 4-36, 4-48 
auto command, bc 6-21 
autombox option. See mail 
autoprint option. See mail 

B 

b command. See vi 
-b option, mail 4-37 
Background 

job, C-shell use. See C-shell 
process 

$! variable 7-17 
ampersand (&) operator 7-23, 7-66 
dial-up line 

Ctrl-d effect 7-24 
nohup command 7-24 

INTERRUPT immunity 7-24 
QUIT immunity 7-24 
use restraint 7-24 

Backslash (\) 
bc 

comment convention 6-15 
line continuation notation 6-7 

C-shell use. See C-shell 

1-1 



Index 

Backslash (\) (continued) 
ed use. See ed 
line continuation notation 7-58 
metacharacter escape 7-4 
quoting 7-67 

BACKSPACE key 
bc 6-2 
mail 4-7, 4-15 

bc 
addition operator 

evaluation order 6-16 
left to right binding 6-5 
scale 6-8, 6-20 
symbol (+) 6-5 

additive operator 
See also specific operator 
left to right binding 6-20 

alphabetic register 6-3 
arctan function 

availability 6-1 
loading procedure 6-15 

array 
auto array 6-21 
characteristics 6-16 
identifier 6-15, 6-22 
name 6-11 
named expression 6-17 
one-dimensional 6-11 

assignment 

1-2 

operator 
designated, use 6-20 
evaluation order 6-16 
positioning effect 6-5 
symbol (=) 6-5 

statement 6-14 
asterisk (*) 

comment convention 6-15 
multiplication operator symbol 6-2, 6-5 

auto 
command 6-21 
keyword 6-16 
statement 

built-in statement 6-22 
backs lash (\) 

comment convention 6-15 
line continuation notation 6-7 

BACKSPACE key 6-2 
bases 6-6 
bc command 

file reading, executing 6-15 
invoking 6-2 

bc -1 command 6-15 
Bessel function 

availability 6-1 

bc (continued) 
Bessel function (continued) 

loading procedure 6-15 
braces ({ }) 

compound statement enclosure 6-22 
function body enclosure 6-9 

brackets ([]) 
array identifier 6-16 
auto array 6-21 
subscripted variable 6-11 

break, keyword 6-16 
break statement 

built-in statement 6-22 
built-in statement 6-22 
caret (A), exponentiation operator symbol 6-5 
comment convention 6-15 
compound statement 6-22 
constant, defined 6-16, 6-17 
construction 

diagram 6-14 
space significance 6-15 

control statements 6-11 
cos function 

availability 6-1 
loading procedure 6-15 

define, keyword 6-16 
define statement 

built-in statement 6-22 
description and use 6-23 

demonstration run 6-1 
described 6-1 
division operator 

left to right binding 6-5,6-19 
scale 6-8,6-19 
symbol (/) 6-5 

equal sign (=) 
assignment operator symbol 6-5 
relational operator 6-12, 6-21 

equivalent constructions diagram 6-14 
evaluation sequence 6-3 
exclamation point (!) 

relational operator 6-12, 6-21 
exit 6-2, 6-4 
exponential function 

availability 6-1 
loading procedure 6-15 

exponentiation operator 
right to left binding 6-5,6-19 
scale 6-8,6-19 
symbol H6-5 

expression 
enclosure 6-17 
evaluation order 6-16 
named expression 6-17 



bc (continued) 
expression (continued) 

statement 6-22 
for, keyword 6-16 
for statement 

break statement effect 6-23 
built-in statement 6-22 
description and use 6-11 
format 6-23 
range execution 6-12 
relational operator 6-21 

function 
argument absence 6-10 
array 6-11 
call 6-17 

defined 6-17 
described 6-18 
evaluation order 6-16 
procedure 6-10 
syntax 6-18 

defined function 6-9 
form 6-9 
identifier 6-15 
name 6-9 
parameters 6-9 
return statement 6-9 
terminating, return statement 6-24 
variable automatic 6-9 

global storage class 6-21 
greater-than sign (» 

relational operator 6-12, 6-21 
hexadecimal digit 

ibase 6-6 
obase 6-7 
value 6-16 

ibase 
decimal input 6-7 
defined 6-17 
initial setting 6-6 
keyword 6-16 
named expression 6-17 
setting 6-6 
variable 6-8 

identifier 
array 6-22 
auto statement effect 6-22 
described 6-15 
global 6-21 
local 6-21 
named expression 6-17 
value 6-21 

if, keyword 6-16 
if statement 

built-in statement 6-22 

bc (continued) 
if statement (continued) 

description and use 6-11 
format 6-23 
range execution 6-12 
relational operator 6-21 

INTERRUPT key 6-2 
introduction 6-1 
invoking 6-2 
keywords designated 6-16 
language features 6-14 
length 

built-in function 6-18 
keyword 6-16 

less-than sign «) 
relational operator 6-12, 6-21 

line continuation notation 6-7 
local storage class 6-21 
log function 

availability 6-1 
loading procedure 6-15 

math function library 6-15 
minus sign ( -) 

subtraction operator symbol 6-5 
unary operator symbol 6-5, 6-18 

modulo operator 
left to right binding 6-5, 6-19 
scale 6-8, 6-19 
symbol (%) 6-5 

multiplication operator 
See also specific operator 
evaluation order 6-16 
left to right binding 6-5, 6-19 
scale 6-8, 6-19 
symbol (*) 6-2, 6-5 

named expression 6-17 

Index 

negative number, unary minus sign (-) 6-5 
obase 

conversion speed 6-7 
defined 6-17 
described 6-7 
hexadecimal notation 6-7 
initial setting 6-7 
keyword 6-16 
named expression 6-17 
variable 6-8 

operator 
See also specific operator 
designated, use 6-5 

parentheses « )) 
expression enclosure 6-17 
function identifier, argument enclosure 

6-16 
percentage sign (%) 

1-3 



Index 

bc (continued) 
percentage sign (%) (continued) 

modulo operator symbol 6-5 
plus sign (+) 

addition operator symbol 6-5 
unary operator symbol 6-18 

program flow alteration 6-11 
quit command 6-2, 6-4 
quit, keyword 6-16 
quit statement 

bc exit 6-23 
built-in statement 6-22 

quoted string statement 6-22 
register 6-3 
relational operator 

designated 6-12,6-21 
evaluation order 6-16 

RETURN key 6-2 
return, keyword 6-16 
return statement 

built-in statement 6-22 
described 6-24 
form 6-9 

scale 
addition operator 6-8, 6-20 
arctan function 6-15 
Bessel function 6-15 
built-in function 6-18 
command 6-8 
cos function 6-15 
decimal digit value 6-9 
defined 6-17 
described 6-7 
division operator 6-8, 6-19 
exponential function 6-15 
exponentiation operator 6-8, 6-19 
initial setting 6-8 
keyword 6-16 
length function 6-18 
length maximum 6-7 
log function 6-15 
modulo operator 6-8, 6-19 
multiplication operator 6-8, 6-19 
named expression 6-17 
sin function 6-15 
square root effect 6-8, 6-18 
subtraction operator 6-8, 6-20 
value printing procedure 6-8 
variable 6-8 

scale command 6-8 
semicolon (;), statement separation 6-3,6-22 
sin function 

availability 6-1 
loading procedure 6-15 

1-4 

bc (continued) 
slash (f), division operator symbol 6-5 
space significance 6-15 
square root 

built-in function 6-18 
keyword 6-16 
result as integer 6-6 
scale procedure 6-8 
sqrt keyword 6-16 

statement 
See also specific statement 
entry procedure 6-14 
execution sequence 6-22 
separation methods 6-22 
types designated 6-22 

storage 
classes 6-21 
register 6-5 

subscript 
array. See array 
described 6-11 
fractions discarded 6-11 
truncation 6-16 
value limits 6-11 

subtraction operator 
left to right binding 6-5 
scale 6-8, 6-20 
symbol (-) 6-5 

syntax 6-1 
token composition 6-15 
truncation 6-8 
unary operator 

designated 6-18 
evaluation order 6-16 
left to right binding 6-18 
symbol (-) 6-5 

value 6-16 
variable 

automatic 6-9, 6-21 
name 6-9 
subscripted 6-11 

while, keyword 6-16 
while statement 

break statement effect 6-23 
built-in statement 6-22 
description and use 6-11 
executing 6-24 
range execution 6-12 
relational operator 6-21 

bccommand 
bc, invoking 6-2 
file, reading and executing 6-15 

bc -1 command, bc 6-15 
DCc escape. See mail 



Bessel function. See bc 
/bin directory 

command search 7-3 
contents 7-42 
name derivation 7-42 
/usr/bin, files duplicated in 7-56 

Binary logical 
and operator 7-45 
or operator 7 -45 

BINUNIQ shell procedure 7-56 
BKSP, vi cursor movement 2-18 
Bourne shell 

TERM variable 2-57 
terminal type 2-57 

Braces ({ }) 
bc 

compound statement enclosure 6-22 
function body enclosure 6-9 

command ({ }) 7-52 
command grouping 7 -31 
pipeline use, enclosing a command list 7-25 
variable 

conditional substitution 7-49 
enclosure 7-12 

Brackets ([]) 
bc 

array identifier 6-16 
auto array 6-21 
subscripted variable 6-11 

directory name, not used in 7-4 
ed metacharacter. See ed 
metacharacter 7-3, 7-66 
pattern matching 7-3 
test command, used in lieu of7-44 

break command 
for command control 7-30 
loop control 7-30 
shell built-in command 7-52 
special shell command 7-38 
while command control 7-30 

Buffer 
See ed 
See vi 

c 

c command. See ed 
C language 

bc 
comment convention similarity 6-15 
syntax agreement 6-1 

shell language 7-2 

Index 

-c option 
mail 4-37 
shell, invoking 7-51 

Calculation. See bc 
Calculator functions. See bc 
Calendar reminder service 4-38 
Calling a remote terminal 

See ct command 
Caret H 

bc, exponentiation operator symbol 6-5 
ed use. See ed 
mail, first message specification 4-19 
mail, first message, symbol 4-8, 4-40 

case command 
description and use 7-27 
exit status 7-27 
redirection 7-34 
shell built-in command 7-52 

Case delimiter symbol (;;) 7-66 
Case-part 7-65 
cat command, ed use. See ed 
-cc escape. See mail 
cd command 

directory change 7-17 
mail 4-26, 4-41 
parentheses use 7-17 
searches 7-54 

CDPATH variable 7-15 
Character class. See ed 
chron option. See mail 
Colon (:) 

command 7-38 
mail 

command escape 4-31 
network mail 4-12 

PATH variable use 7-14 
shell built-in command 7-52 
variable conditional substitution 7-50 
vi use. See vi 

Colon command (:). See Colon (:), command 
Command 

defined 7-23 
delimiter. See ed 
ed commands. See ed 
enclosure in parentheses « )), effect 7-52 
environment 7-19 
execution 7-2 

time 7-51 
exit status. See Exit status 
grammar 7-64 
grouping 

exit status 7-33 
parentheses « )) use 7-66 
procedure 7-31 

1-5 



Index 

Command (continued) 
grouping (continued) 

WRITEMAll.., shell procedure 7-64 
keyword parameter 7-19 
line. See Command line 
list. See Command list 
mail commands summary 4-40 
mode. See vi 
multiple commands 7-9 
output substitution symbol 7-66 
private command name 7-3 
public command name 7-3 
search 

PATH variable 7-14 
process 7-54 

separation symbol (;) 7-66 
shell, built-in commands 7-52 
simple command 

defined 7-2, 7-23 
grammar 7 -64 

slash (() beginning, effect 7-3 
special shell commands 

described 7-38 
See Shell 

substitution 
back quotation mark (') 7-4 
double quotation mark (") 7-5 
procedure 7-9 
redirection argument 7-6 

vi commands. See vi 
Command line 

execution 7-22 
options 

See also specific option 
designated 7-50 

pipeline, use in 7 -25 
rescan 7-22 
scanning sequence 7-22 
substitution 7-9 

Command list 
case command, execution 7-27 
defined 7-23 
for command, execution 7-28 
grammar 7 -64 

Command mode. See vi 
Communication. See mail 
Compose escape, See mail 
continue command 

for command control 7-30 
shell built-in command 7-52 
special shell command 7-38 
until command control 7-31 
while command control 7-30 

Control command 

1-6 

Control command (continued) 
See also specific control command 
function 7-33 
redirection 7-34 

Copy 
command 2-26 
files 

local site. See rcp 
remote site. See uucp 

text 2-26 
COPYPAIRS shell procedure 7-57 
COPYTO shell procedure 7-57 
csh command, C-shell, invoking 8-1 
C-shell 

> & symbol, redirecting 8-9 
alias command 

listing 8-10 
multiple command use 8-8 
number limits 8-8 
pipelines 8-8 
quoting 8-8 
removing 8-12 
use 8-7,8-10 

ampersand (&) 
background job symbol 8-9 
background job use 8-24 
boolean AND operation (&&) 8-15 
if statement, not used in 8-17 
redirection symbol 8-9 

appending 
noclobber variable effect 8-9 
symbol (») 8-9 

argument 
expansion 8-23 
group specification 8-24 

argv variable 
filename expansion, preventing 8-16 
script contents 8-12 

arithmetic operations 8-15 
asterisk (*) 

character matching 8-24 
script notation 8-14 

background job 
procedure 8-9 
symbol (&) 8-9 
terminating 8-10 

backslash N 
filename, separating parts 8-24 
if statement use 8-17 
metacharacter 

cancelling 8-24 
escape 8-8 

separating parts of filenames 8-24 
boolean AND operation 8-15 



C-shell (continued) 
boolean OR operation 8-15 
braces ({ }) 

argument 
expansion 8-23 
grouping 8-24 

brackets ([)), character matching 8-24 
break command 

foreach statement exit 8-19 
loop break 8-16 
while statement exit 8-19 

breaksw command, switch exit 8-19 
c command, reuse 8-5 
caret H, history substitution use 8-25 
character matching 8-24 
colon (:) 

script modifier 8-18 
substitution modifier use 8-25 

command 
See also specific command 
break command 8-16 
continue command, loop use 8-16 
default argument 8-7 
du command 8-10 
execution status 8-15 
expanding 8-23 
file. See C-shell, script 
foreach command 8-21 

exit 8-19 
script use 8-16 

history 
See also C-shell, history 
use 8-10 

history list 8-5 
input supply 8-20 
location 

determining 8-10 
recomputing 8-3 

logout command 8-2, 8-10 
multiple commands 8-9 
prompt symbol (%) 8-2 
quoting 8-22 
read only option 8-21 
reading from file 8-11 
rehash command 8-3 
repeating 8-11 

mechanisms 8-7 
replacing 8-23 
separating 8-24 

symbol (;) 8-8 
set command 8-2 
similarity, foreach command 8-21 
simplifYIng 8-7 
source, command reading 8-11 

Index 

C-shell (continued) 
command (continued) 

substituting 
string modification 8-18 
symbol 8-25 

termination testing 8-15 
timing 8-11 
transformation 8-7 
unalias command 8-12 
unset command 8-12 

command prompt-symbol (%) 8-2 
commands, multiple 

alias use 8-8 
single job 8-9 

comment 
metacharacter 8-25 
script use 8-13 
symbol 8-18 

continue command, loop use 8-16 
.cshrc file 

alias placement 8-7 
use 8-1 

diagnostic output 
directing 8-8 
redirecting 8-9 

directory 
examination 8-3 
listing 8-2 

disk usage 8-10 
dollar sign ($) 

last argument symbol 8-6 
process number expansion 8-14 
variable substitution 

symbol 8-13 
use 8-25 

du command 8-10 
:e modifier 8-18 
echo option 8-21 
else-if statement 8-18 
environment 

printing 8-11 
setting 8-11 

equal sign (=) 
string comparison use (==), (=-) 8-15 

exclamation point (!) 
history mechanism use 8-6, 8-10, 8-25 
noclobber, overriding 8-4 
string comparison use (!=), (n 8-15 

execute primitive 8-15 
existence primitive 8-15 
expansion 

control 8-21 
metacharacters designated 8-25 

expression 

1-7 



Index 

C-shell (continued) 
expression (continued) 

enclosing 8-24 
evaluation 8-15 
primitives 8-15 

extension, extracting 8-18 
file 

appending 8-9 
command content 8-12 
enquiries 8-15 
overwriting 

preventing 8-4 
procedure 8-4 

filename 
expansion 8-23 
expansion, preventing 8-16 
home directory indicator 8-24 
metacharacters designated 8-24 
root extraction 8-18 
scratch filename metacharacter 8-25 

foreach command 8-21 
exit 8-19 
script use 8-16 

goto 
label, script cleanup 8-21 
statement 8-19 

greater-than sign (» 
redirection symbol 8-9, 8-25 

history 
command 8-7 

use 8-10 
list 8-5 

command substitution 8-10 
contents display 8-10 

mechanism 
alias, use in 8-8 
invoking 8-6 
use 8-6 

substitution symbol 8-25 
variable 8-2 

home variable 8-4 
if statement 8-17 
ignoreeof variable 8-2, 8-4 
input 

execution procedure 8-13 
metacharacters designated 8-25 
variable substitution 8-13 

INTERRUPT key 
backgroundjob,effect8-10 

invoking 8-1 
kill command 

background job termination 8-10 
less-than sign «) 

redirection symbol 8-25 

1-8 

C-shell (continued) 
less-than sign «) (continued) 

script inline data supply «<) 8-20 
logging out 

logout command 8-2, 8-10 
procedure 8-2 
shield 8-2 

.login file, use 8-1 
logout command, use 8-2, 8-10 
.logout file, use 8-2 
loop 

break 8-16 
input prompt 8-22 
variable use 8-22 

mail 
invoking 8-2 
variable 8-4 

new mail notification 8-2 
metacharacter 

cancelling 8-24 
expansion metacharacter 8-25 
filename metacharacter 8-24 
input metacharacter 8-25 
output metacharacter 8-25 
quotation metacharacter 8-24 
substitution metacharacter 8-25 
syntactic metacharacter 8-24 

metasyntax, exclamation point (!) 8-4 
minus sign (-), option prefix 8-25 
modifiers 8-18 
nkey 

out-of-range subscript errors, absence 8-15 
script notation 8-14 

-n option 8-21 
new program, access 8-3 
noclobber variable 8-4 

appending procedure 8-9 
redirection symbols 8-9 

noglob variable 
filename expansion, preventing 8-16 

number sign (#) 
C-shell comment 

symbol 8-13 
use 8-18 

C-shell comment symbol 8-21 
C-shell comment use 8-25 
scratch filename use 8-25 

onintr label, script cleanup 8-21 
option, metacharacter 8-25 
output 

diagnostic 8-8 
metacharacters designated 8-25 
redirecting 8-9 

parentheses « », enclosing an expression 8-24 



C-shell (continued) 
path variable 8-2 
pathname, component separation 8-24 
percentage sign (%) 

command prompt symbol 8-2 
pipe symbol (I) 

boolean OR operation (II) 8-15 
command separator 8-24 
if statement, not used in 8-17 
redirection symbol 8-9 

pipeline, alias, use in 8-8 
primitives 8-15 
printenv, environment printing 8-11 
process number 

expansion notation 8-14 
listing 8-10 

prompt variable 8-10 
ps command, process number listing 8-10 
question mark (?) 

character matching 8-24 
loop input prompt 8-22 

QUIT signal 
background job, effect on 8-10 

quotation mark 
back (') 

command use 8-22 
substitutions 8-25 

double (") 
expansion control 8-21 
metacharacter escape 8-24 
string quoting 8-22 

single (') 
alias definition 8-8 
metacharacter escape 8-24 
quoted string, effect 8-21 
script inline data quoting 8-20 

quotation metacharacters designated 8-24 
:r modifier 8-18 
read primitive 8-15 
redirecting 

diagnostic output 8-9 
output 8-9 
symbols designated 8-25 

rehash command 8-3 
command locations, recomputing 8-10 

repeat command 8-11 
root part of filename 

separating from extensions 8-24 
script 

clean up 8-21 
colon (:) modifier 8-18 
command input 8-20 
comment required 8-21 
described 8-12 

Index 

C-shell (continued) 
script (continued) 

example 8-16 
execution 8-13 
exit 8-21 
inline data supply 8-20 
interpretation 8-12 
interruption catching 8-21 
metanotation for inline data 8-20 . 
modifiers 8-18 
notations 8-14 
range 8-15 
variable substitution 8-14 

semicolon (;) 
command separator 8-8, 8-24 
if statement, not used in 8-17 

set command 
variable listing 8-3 
variable value assignment 8-2 

setenv command 
environment setting 8-11 

slash (/) 
separating components of pathname 8-24 

source command 
reading a command 8-11 

status variable 8-15 
string 

comparing 8-15 
modifying 8-18 
quoting 8-22 

substitution metacharacters designated 8-25 
switch statement 

exit 8-19 
form 8-19 

syntactic metacharacters designated 8-24 
TERM variable 2-57 
terminal type, setting 2-57 
then statement 8-17 
tilde (-), home directory indicator 8-24 
time 

command timing 8-11 
variable 8-2 

unalias command, removing an alias 8-12 
unset command 8-12 
unsetting procedure 8-4 
-v command line option 8-21 
variable 

See also specific variable 
component access 8-14 

notations 8-13 
definition, removing 8-12 
environment variable setting 8-11 
expansion 8-14, 8-22 
listing 8-3 

I-9 



Index 

C-shell (continued) 
variable (continued) 

loop use 8-22 
setting procedure 8-4 
substitution 8-13 

metacharacter 8-25 
use 8-2 
value assignment 8-2 

check 8-13 
verbose option 8-21 
while statement 

exit 8-19 
form 8-19 

write primitive 8-15 
-x command line option 8-21 

C-shell with UUCP commands 5-9 
.cshrc file 

C-shell use 8-1 
ct command 5-15 

-h option 5-17 
how it works 5-15 
-s option 5-16 
sample command 5-15, 5-17 
syntax of 5-15 
using 5-15 
when to use 5-15 

Ctrl-d 
bc exit 6-2,6-4 
mail 

message sending 4-3, 4-11 
reply message, terminating 4-16 4-

shell exit 4-26, 7-31 ' 
vi, scroll 2-22 

Ctrl-f, vi, scroll 2-22 
Ctrl-g, vi, file status information 2-11 
Ctrl-h, mail 4-7 
Ctrl-u 

mail, line kill 4-7, 4-15 
vi, scroll 2-22 

cu command 
calling 

UNIX sites 5-17 
XENIX sites 5-17 

command line 5-17 
dialing phone numbers with 5-17 
error checking 5-20 
interactive sessions with 5-17 
limitations on 5-17 
logging in with 5-19 
put command 5-20 
sample command 5-18 
serial lines with 5-18 
syntax of 5-17 
system names with 5-18 

1-10 

cu command (continued) 
take command 5-19 
terminating a remote session 5-18 
transfer files 5-19 
using 5-17, 5-18 

Current line. See vi 
Cursor movement, vi. See vi 
Cut and paste procedure. See ed 

D 

d command, ed use. See ed 
d$ command. See vi 
dO command. See vi 
dd command. See vi 
-dead escape. See mail 
Delete 

commands 2-64 
vi procedure. See vi, deleting text 

Delete buffer. See vi 
Delimiter. See ed 
Diagnostic output. See Output 
Dial-up line. See Background process 
Digit grammar 7 -65 
Directory 

C-shell 
listing 8-2 
use. See C-shell 

name, metacharacters in 7-4 
search 

optimum order 7-54 
PATH variable 7-54 
sequence change 7-3 
size effect 7-55 
time consumed in 7-54 

size consideration 7-55 
DISTINCT! shell procedure 7-58 
Division. See bc 
Dollar sign ($) 

ed use. See ed 
mai!,. final message, symbol 4-8, 4-19, 4-40 
posItIOn.al parameter prefix 7-11, 7-12 
PSI varIable default value 7-15 
variable prefix 7-12 
vi use. See vi 

Dot (.) 
command 

description and use 7-34 
shell built-in command 7-52 
shell procedure alternate 7-42 
special shell command 7-38 

ed use. See ed 



Dot (.) (continued) 
mail, current message specification 4-19 
mail, current message, symbol 4-8 
option. See mail 
vi use. See vi 

Dot command (.). See Dot (.), command 
dp command. See mail 
DRAFT shell procedure 7-59 
dw command. See vi 

E 

e command 
ed use. See ed 
mail 4-8, 4-41 
mailR 4-25 

-e option, shell procedure 7-43 
echo command 

ed 

description and use 7-45 
mail 4-41 
-n option effect 7-46 
shell built-in command 7-52 
syntax 7-45 

a command 
appending 3-4,3-60 
backslash (\) characteristics 3-39 
dot (.) setting 3-52,3-60 
global combination 3-29 
terminating input 3-4, 3-36 

address arithmetic 3-11 
ampersand (&) 

literal 3-48 
metacharacter 3-47 
substitution 3-47 

appending, a command 3-4 
asterisk (*), metacharacter 3-33 3-42 
at sign (@), script 3-59 ' 
backs lash (\) 

a command 3-39 
c command 3-39 
g command 3-29 
i command 3-39 
line folding 3-30 
literal 3-37 
metacharacter 3-33, 3-36 
meta~~aracter escape 3-37,3-48,3-49 
multllme construction 3-29 
number string 3-30 
v command 3-29 

backspace printing 3-30 
brackets ([]) 

Index 

ed (continued) 
brackets ([]) (continued) 

character class 3-46 
metacharacter 3-33,3-45 

buffer 
described 3-4 
writing to file 3-5 

c command 
backslash (\) characteristics 3-39 
dot (.) setting 3-24,3-52,3-60 
global combination 3-29 
line change 3-23, 3-60 
terminating input 3-24 

caret (A) 
character class 3-46 
line beginning notation 3-41 
metacharacter 3-33,3-41 

cat command 3-7 
change command, c command 3-23 
character 

class 3-46 
deleting 3-45 

command 
See also specific command 
combinations 3-29 
delimiter character 3-38 
described 3-4 
editing command 3-58 
form 3-60 
INTERRUPT key effect 3-56 
listing 3-60 
multicommand line restrictions 3-18 
summary 3-60 

current line 3-12 
cut and paste 

move command 3-25 
procedures 3-56 

dcommand 
deleting 3-15, 3-60 
dot (.) setting 3-52, 3-60 

deleting, d command 3-15 
delimiter, character choice 3-38 
described 3-1 
dollar sign ($) 

last line notation 3-10, 3-15, 3-41 
line end notation 3-39, 3-41 
metacharacter 3-33, 3-39 
multiple functions 3-41 

dot (.) 
current line notation 3-11 
described 3-13 
position in file 3-51 
search setting 3-20,3-61 
substitution, setting 3-17 

1-11 



Index 

ed (continued) 

1-12 

dot (.) (continued) 
symbol (.) 3-13, 3-36 
value detennination 3-14, 3-61 

duplication, t command 3-32 
e command 3-7, 3-60 
editing, e command 3-7 
entry 3-3 
equals sign (=) 

dot value printing (.=) 3-14, 3-61 
last line value printing 3-61 

escape command (!) 3-33, 3-61 
exclamation point (!) 

escape command 3-33 
exiting a file, q command 3-3 
f command 3-8, 3-60 
file 

insert into another file 3-57 
writing out 3-57 

filename 
change 3-8 
recovery 3-8 
remembered filename, printing 3-8 
remembered filename printing 3-60 

folding 3-30 
gcommand 

a command combination 3-29 
backslash N use 3-29 
c command combination 3-29 
command combinations 3-27, 3-29 
dot (.) setting 3-28 
i command combination 3-29 
line number specifications 3-28 
multiline construction 3-29 
s command combination 3-28,3-61 
search, command execution 3-27, 3-60 
substitution 3-19, 3-33 
trailing g 3-33 

global command 
g command 3-27 
v command 3-27 

greater-than sign (», tab notation 3-30 
grep command 3-33 
hyphen (-), character class 3-46 
icommand 

backslash (\) characteristics 3-39 
dot (.) setting 3-24, 3-52, 3-60 
global combination 3-29 
inserting 3-23, 3-60 
tenninating input 3-36 

in-line input scripts 7-59 
input, terminating 3-4, 3-24, 3-36 
inserting, i command 3-23 
INTERRUPT key 

ed (continued) 
INTERRUPT key (continued) 

command execution effect 3-56 
dot (.) setting 3-56 
print stopping 3-10 

introduction 3-1 
invoking 3-3 
j command, line joining 3-50 
k command, line marking 3-31 
I command 

folding 3-30 
line listing 3-30, 3-60 
nondisplay character printing 3-30 
number string 3-30 
s command combination 3-34 

less-than sign «) 
backspace notation 3-30 

line 
beginning 

character deleting 3-45 
notation 3-41 

break 3-49 
end 3-39 

notation 3-39 
folding 3-30 
joining 3-50 
marking 3-31 
moving 3-30 
new 3-49 
number 3-11 

o as line number 3-56 
combinations 3-11 
summary 3-60 

rearrangement 3-50 
splitting 3-49 
writing out 3-58 

list, 1 command 3-30 
mcommand 

dot (.) setting 3-26, 3-60 
line moving 3-25,3-60 
warning 3-26 

mail system. See mail 
marking, k command 3-31 
metacharacter 

ampersand (&) 3-47 
asterisk (*) 3-33, 3-42 
backslash (\) 3-33,3-36 
brackets ([]) 3-33, 3-45 
caret H 3-33, 3-41 
character class 3-46 
combinations 3-42 
dollar sign ($) 3-33, 3-39 
escape 3-38, 3-48 
period (.) 3-33, 3-34 



ed (continued) 
metacharacter (continued) 

search 3-46 
slash (I) 3-33 
star (*) 3-33, 3-42 

minus sign (-), address arithmetic 3-11 
move 

line marking 3-31 
m command 3-25 

multicommand line restrictions 3-18 
new line, substitution 3-49 
nondisplay character printing 3-30 
pcommand 

dot (.) setting 3-56 
multicommand line 3-18 
printing 3-9, 3-61 
s command combination 3-34 

pattern search. See ed, search 
period (.) 

a command, terminating input 3-4, 3-36 
c command, terminating input 3-24 
character substitution 3-34 
dot symbol. See Dot (.) 
i command, terminating input 3-36 
literal 3-37 
metacharacter 3-33, 3-34 
s command, effect 3-34 
script problems 3-59 
search problems 3-33 
troff command prefix 3-27 

plus sign (+), address arithmetic 3-11 
print 

command 3-9 
line folding 3-30 
RETURN key effect 3-14 
stopping 3-10 

qcommand 
abort 3-61 
quit session 3-6, 3-61 
w command combination 3-61 

question mark (?) 
exit warning 3-3 
search error message (?) 3-20 
search repetition (??) 3-22 
search, reverse direction (? ?) 3-20,3-62 
write warning 3-6 

quit, q command 3-6 
quotation mark, single (') 

line marking 3-31 
rcommand 

dot (.) setting 3-53,3-61 
file inserting 3-57 
positioning without address 3-57 
read file 3-8, 3-61 

Index 

ed (continued) 
reading, r command 3-8 
regular expression 

described 3-33 
metacharacter list 3-33 

RETURN key, printing 3-61 
scommand 

ampersand (&) 3-47 
character match 3-34 
description and use 3-16, 3-61 
dot (.) setting 3-17,3-52,3-61 
g command combination 3-19,3-28,3-61 
I command combination 3-34 
line number 3-34 
new line 3-49 
p command combination 3-34 
removing text 3-18 
search combination 3-21 
trailing g 3-33 
undoing 3-31 
v command combination 3-28 

script 3-59 
search 

dot (.) setting 3-61 
error message (?) 3-20 
forward search (I I) 3-19, 3-61 
global search 

g command 3-27 
v command 3-27 

metacharacter problems 3-33 
next occurrence description 3-20 
procedure 3-19 
repetition (II), (??) 3-22 
reverse direction (? ?) 3-20 
separator 3-54 
substitution combination 3-21 

sed command 3-33 
semicolon (;) 

dot (.) setting 3-55 
search separator 3-54 

shell, escape 3-33 
slash (I) 

delimiter 3-38 
literal 3-38 
metacharacter 3-33 
search forward (I I) 3-19, 3-61 
search repetition (II) 3-22 

special character 3-33 
spelling correction, s command 3-16 
star (*), metacharacter 3-33, 3-42 
substituting, s command 3-16 
tcommand 

dot C.) setting 3-61 
transfer line 3-32, 3-61 

1-13 



Index 

ed (continued) 
tab printing 3-30 
tbl command 3-58 
terminating, q command 3-6 
text 

removing, s command 3-18 
saving 3-6 

transfer 3-32 
troff command printing 3-27 
typing-error corrections 

s command 3-16 
u command, undo 3-31,3-61 
undo, u command 3-31 
v command 

a command combination 3-29 
backslash (\) use 3-29 
c command combination 3-29 
command combinations 3-27, 3-29 
dot (.) setting 3-28 
global search, substitute 3-27, 3-61 
i command combination 3-29 
line number specifications 3-28 
s command combination 3-28 

wcommand 
advantages of frequent use 3-53 
description and use 3-5 
dot (.) setting 3-53, 3-61 
e command combination 3-60 
file write out 3-57 
line write out 3-58 
write out 3-5,3-6,3-57,3-61 

write out 
w command 3-6 
warning 3-6 

EDFIND shell procedure 7-59 
Editor 

See ed 
See vi, described 

-editor escape. See mail 
EDITOR string, mail 4-34, 4-48 
EDLAST shell procedure 7-60 
elif clause, if command 7-26 
else clause, if command 7-25 
Else-part grammar 7 -65 
Empty grammar 7 -65 
Equal sign (=) 

bc 
assignment operator symbol 6-5 
relational operator 6-12, 6-21 

ed use. See ed 
mail, message number printing 4-19, 4-40 
variable 

1-14 

conditional substitution 7-49 
string value assignment 7 -11 

Error output, redirecting 7 -48 
escape command (!) 3-33 
ESCAPE key, vi use. See vi 
Escape string, mail 4-35, 4-48 
etc/default/micnet 5-5 
eval command 

command line rescan 7-22 
shell built-in command 7-52 

ex and ed, similarity 3-1 
Exclamation point (!) 

bc, relational operator 6-12, 6-21 
C-shell use. See C-shell 
ed use. See ed 
mail 

network mail 4-13 
shell command, executing 4-25,4-30,4-40 

unary negation operator 7-45 
vi use. See vi 

exec command 7-38, 7-52 
Execute commands 

over Micnet. See remote 
remote machines. See uux command 

Exit 
code 7-16 
command. See exit command 
status 

$? variable 7-16 
case command 7-27 
cd arg command 7-38 
colon command (:) 7-38 
command grouping 7-33 
false command 7-47 
if command 7-26 
read command 7-39 
true command 7-47 
until command 7-28 
wait command 7-41 
while command 7-28 

exit command 
shell built-in command 7-52 
shell exit 7-31 
special shell command 7-38 

export command 
shell built-in command 7-52 
variable 

example 7-15 
listing 7-19 
setting 7-19 

expr command 7-46 



F 

fcommand 
ed use. See ed 
mail 4-14, 4-15, 4-24, 4-41 

F command, mail 4-15, 4-24, 4-41 
-f option, mail 4-11, 4-37 
false command 7-47 
fi command 

if command end 7-25 
mail 4-41 

File 
creating 

MKFILES shell procedure 7-62 
with vi 2-2 

descriptor 
redirection 7-7, 7-48 
use 7-6 

grammar 7 -64 
mail system files. See mail 
pattern search 

grep command 3-61 
See ed, search 

pipe interchange 7-58 
shell procedure, creating 7-41 
textual contents, determining 7-63 
variable file, creating 7-34 

Filename 
argument 7-3 
ed use. See ed 

Filter 
described 7-8 
order consideration 7-53 

Flag. See Option 
for command 

break command effect 7-30 
continue command effect 7-30 
description and use 7-28 
redirection 7-34 
shell built-in command 7-52 

for loop, argument processing 7-21 
fork command 7-52 
FSPUT shell procedure 7 -60 
Function, defined 7-33 

G 

G command 2-5 
vi use. See vi 

g command. See ed 
Global 

Index 

Global (continued) 
variable check 7-43 
substitution 

ed use. See ed 
vi 2-41 
See vi, search and replace 

goto command 2-5 
Greater-than sign (» 

bc, relational operator 6-12, 6-21 
PS2 variable default value 7-15 
redirection symbol 7-66 

grep command, ed use. See ed 

H 

hcommand 
mail 4-10, 4-20, 4-42 
vi use. See vi 

H flag, mail 4-20 
hash command 

described 7-38 
special shell command 7-38 

headers command. See mail 
neaders escape. See mail 
help key, vsh 9-2 
history command, C-shell 8-7 
ho command. See mail 
HOME variable 

conditional substitution 7-50 
described 7-13 

I 

i command. See ed 
-i option 

mail 4-11, 4-36, 4-37, 4-48 
shell, invoking 7-50 

if command 
COPYTO shell procedure 7-58 
description and use 7-25 
exit status 7 -26 
fi command required 7-26 
multiple testing procedure 7-26 
nesting 7-26 
redirection 7-34 
shell built-in command 7-52 
test command 7-44 

IFS variable 7-13 
ignore option. See mail 

1-15 



Index 

ignorecase option 2-40 
Indirect file transfers over phone lines 5-10 
In-line input document. See Input 
Input 

ed use. See ed 
grammar 7-64 
in-line input 

document 7-47 
EDFIND shell procedure 7-59 

standard input file 7-6 
Insert 

See also Append 
ed use. See ed 
vi procedure 2-24 

Insert mode. See vi 
Internal field separator 

shell scanning sequence 7-22 
specified by IFS variable 7-13 

Interrupt 
handling methods 7-35 
key. See INTERRUPT key 

INTERRUPT key 
background process immunity 7-24 
bc 6-2 
ed use. See ed 
mail 

askcc switch 4-33 
cancel 4-15, 4-34 

Invocation flag. See Option 
Item grammar 7 -64 

J 

j command, cursor movement 
ed use. See ed 
vi use. See vi 

J command, joining lines 
ed use. See ed 
vi use. See vi 

K 

k command, cursor movement 
ed use. See ed 
vi use. See vi 

-k option, shell procedure 7-43 
Keyword parameter 

described 7-19 
-k option effect 7-43 

1-16 

kill command, C-shell use. See C-shell 

L 

I command 
ed use. See ed 
mail 4-23, 4-42 
vi use. See vi 

Less-than sign «) 
bc, relational operator 6-12, 6-21 
redirection symbol 7 -66 

Line 
beginning. See ed 
writing out. See ed 

line command 
shell variable value assignment 7-10 

linenumber option. See vi 
Line-oriented commands 2-11 
list command, mail 4-42 
list option. See vi 
LISTFIELDS shell procedure 7-61 
Logging out, shell termination 7-31 
Login directory, defined 7-13 
.login file, C-shell use 8-1 
logout command, C-shell use 8-2 
.logout file, C-shell use 8-2 
Looping 

break command 7-30 
continue command 7-30 
control 7-30 
expr command 7-46 
false command 7-47 
for command 7-28 
iteration counting procedure 7-46 
time consumed in 7-51 
true command 7-47 
unconditional loop implementation 7-47 
until command 7-28 
while command 7-28 
while loop 7-57 

lp command, mail, -m option 4-38 
lprcommand 

mail, message printing 4-23, 4-42 
Is command 

echo *, used in lieu of 7 -46 



M 

mcommand 
ed use. See ed 
mail 4-23, 4-42 

M flag,maiI4-20 
-m option, mail 4-38 
magic option. See vi 
mail 

- - tilde quote escape C -) 4-32 
-: command escape 4-31 
? command, help 4-17 
-? help escape 4-27 
-! shell escape 4-30 
-I shell escape CI) 4-31 
a command. Seemail.alias 
accumulation of 4-38 
alias 

a command 4-16, 4-24, 4-41 
Alias, displays system-wide aliases 4-40 
display 4-16 
personal 4-16, 4-32 
R command 4-16 
system-wide 4-32 

askcc option 4-17, 4-33, 4-47 
asksubject option 4-33, 4-47 
asterisk (*) 

character matching 4-8 
message saved, header notation 4-20, 4-22 

at sign (@), ignore switch echo 4-36, 4-48 
autombox option 

description and use 4-36,4-47 
effect 4-21 
H flag 4-20 
ho command 4-23 

autoprint option 4-33, 4-47 
D escape 4-28 
-b option 4-37 
BACKSPACE key 4-7, 4-15 
DCC escape 4-46 
Bcc field 4-29 
blind carbon copy field 

described 4-6 
editing 4-29 
escape 4-46 

box. See Mailbox 
-c escape 4-28 
-c option 4-37 
carbon copy field 

additions prompt 4-17 
blind field 4-6 
described 4-6 
display 4-4 

mail (continued) 
carbon copy field (continued) 

editing 4-29 
escape 

-c escape 4-28 
-cc escape 4-46 

option, askcc option 4-33 
R command effect 4-16 

Index 

caret H, first message, symbol 4-8, 4-19, 4-40 
-cc escape 4-46 
cc field 4-29 
cd command 4-26, 4-41 
chron option 4-33,4-47 
colon (:) 

escape 4-31 
network mail 4-12 

command 
See also specific command 
described 4-17 
escape C:) 4-31, 4-45 
invoking 4-17 
line, options 4-36 
mode 

description and use 4-7 
help command 4-17 
options 4-17 

summary 4-40 
syntax 4-10 

command line, options 4-36 
compose 

escape 
See also specific escape 
edit mode 4-8 
heading escape 4-28 
listing 4-2, 4-15 
m command 4-23 
reply 4-23 
summary 4-45 
symbol, CI ) 4-45 
tilde (-) component 4-7, 4-15 

mode~ See mail, compose mode 
compose mode 

description and use 4-7 
edit mode, entering 4-8 
entering from 

command mode 4-15 
shell 4-14 

exit 4-7 
concepts 4-5 
C-shell, new mail notification 8-2 
Ctrl-d 

message reply 4-16, 4-23 
message sending 4-11 

Ctrl-h, backspace 4-7 

1-17 



Index 

mail (continued) 
Ctrl-u, line kill 4-7, 4-15 
d command 4-4, 4-9, 4-14, 4-21, 4-41 
-d escape 4-29,4-30,4-46 
-dead escape 4-29,4-46 
dead.letter file 

escape 4-30 
nosave switch effect 4-34 
undelivered message receipt 4-12 

deleting 4-41 
distribution list, creating 4-16 
dollar sign ($) 

final message, symbol 4-8, 4-19, 4-40 
dot (.), current message symbol 4-8, 4-19 
dot option 4-34, 4-47 
dp command 4-21, 4-41 
e command 4-25, 4-41 
-e escape 4-27,4-46 
echo command 4-41 
editor escapes 4-27 
EDITOR string 4-34, 4-48 
entry 4-11 
equal sign (=) 

message number printing 4-19, 4-40 
escape 

command mode 4-31 
compose CI) 4-45 
editing 4-27 
headers 4-28,4-29 
help 4-27 
printing 4-27 
shell 4-31 
string 4-35, 4-48 
tilde escapes 4-7, 4-8 
write 4-30 

exclamation point (!) 
network mail 4-13 
shell command, executing 4-25,4-30,4-40 

execmail 4-34 
exit 

q command 4-5, 4-11, 4-21, 4-43 
x command 4-21, 4-41 

f command 4-14, 4-24, 4-41 
F command 4-15 
-f option 4-11, 4-37 
fi command 4-41 
file switch 4-37 
files, designated 4-39 
forwarding 

messages not deleted 4-21 
procedure 4-24 

h command 4-10, 4-20, 4-42 
n escape 4-29,4-46 
H flag, message saving 4-20 

1-18 

mail (continued) 
header 

characteristics 4-20 
command 4-20 
compose escape 4-28 
composition 4-6 
defined 4-9 
display 4-3, 4-9, 4-11 
listing 4-42 
windows 4-9, 4-20 

neaders escape 4-29,4-46 
help 

command (?) 4-4, 4-17 
escape P) 4-15, 4-27, 4-45 

hocommand 
described 4-23 
H flag 4-20 
message saving 4-42 

hold command 4-23 
-i option 4-11, 4-36, 4-37, 4-48 
ignore switch. See mail, -i option 
INTERRUPT key 4-15 

cancel 4-34 
recipient list 4-33 

introduction 4-1 
1 command 4-23, 4-42 
line kill 4-7, 4-15 
list command 4-42 
lp command, -m option 4-38 
Ipr command, message printing 4-23, 4-42 
m command 4-23, 4-42 
-m escape 4-30 
M flag, message saving 4-20 
-m option 4-38 
mail command 

command mode entry 4-7, 4-11 
compose mode entry 4-15 
help 4-4 
message reading 4-3, 4-13 
message sending 4-2,4-42 

mail escapes 4-30 
mailbox. See Mailbox 
.mailrc file 

alias contents 4-24 
distribution list, creating 4-16 
example 4-32 
options setting 4-17 
set command 4-25 
unset command 4-25 

mb command 4-22, 4-42 
mbox command 4-22 
mchron option 4-48 
message 

advancing 4-14,4-40 



mail (continued) 
message (continued) 

body 4-6 
cancel 4-15, 4-34 
composition 4-6 
delete, undoing 4-21 
deleting 4-4,4-9,4-14,4-21,4-41 
described 4-6 
editing 4-15, 4-25, 4-37, 4-41 
file, including a 4-29 
forwarding 4-14 
header 4-9 
ignore phone noise 4-11 
inserting into new message 4-30 
list. See mail, message-list 
listing 4-3 
number 

command 4-19, 4-40 
message printing 4-14 
printing 4-19, 4-40 
types 4-8 

printing 4-21 
range described 4-8 
reading 4-3,4-11,4-13 

into file 4-11 
reply 4-14 
saving 4-22 
sending 4-3 
size 4-26, 4-44 
specification 4-8,4-16 
undelete command 4-14 

-Message escape 4-46 
message-list 

argument, multiple messages 4-16 
composition 4-8 
described 4-10 

metacharacters 4-8,4-19 
metoo option 4-34, 4-48 
minus sign (-), message advance 4-40 
network mail 4-13 
noisy phone line 4-11 
nosave option 4-34, 4-48 
number command 4-8 
options 

See also specific option 
command line options 4-36 
setting 4-17 
summary 4-47 
switch option, setting 4-25 

organizing 4-38 
pcommand 

message printing 4-4,4-8, 4-18, 4-43 
syntax 4-10 

-p escape 4-27 

Index 

mail (continued) 
page option 4-35 
period (.), dot use 4-18 
phone line noise 4-11 
plus sign (+), message advance 4-40 
-print escape 4-46 
printing 

lineprinter, lpr command 4-23 
lpr command 4-27 
p command 4-43 
-p escape 4-27 
procedure 4-8, 4-14 
top five lines 4-16 

programs designated 4-39 
qcommand 

cancel 4-34 
exit 4-5, 4-11, 4-21, 4-43 

question mark (?) 
command summary printing 4-40 
compose escape help 4-15 
help command 4-17 

quiet option 4-34, 4-48 
-quit escape 4-46 
rcommand 

compose mode entry 4-15 
message reply 4-14, 4-16 

Rcommand 
alias effect 4-16 
message reply 4-23, 4-43 

-r escape 4-29,4-46 
-R option 4-37 
-read escape 4-29,4-46 
read escape 

-d escape 4-29 
-r escape 4-29 

recipient list, adding a name 4-28 
record string 4-35, 4-48 
reminder service 4-38 
Reply command 4-16 
reply command 4-23 
return receipt request field 4-6 
s command 

flag 4-20 
message saving 4-22, 4-43 
saving 4-20 
system mailbox, deleting a message 4-21 

-s escape 4-28,4-47 
-s option 4-36 
saving 

asterisk (*) notation 4-22 
automatic 4-21 
command 4-22 
flag 4-20 
ho command 4-42 

1-19 



Index 

mail (continued) 
saving (continued) 

M flag 4-20 
message display 4-5 
s command 4-22, 4-43 
system mailbox 4-11 
w command 4-22, 4-44 

se command 4-43 
sending 

cancellation impossible 4-3 
multiple recipients 4-11 
network mail 4-12, 4-13 
procedure 4-11 
remote sites 

Micnet 4-12 
UUCP4-12 

to self 4-2 
session abort 4-14 
set command 

description and use 4-25,4-43 
option control 4-47 

set options defined 4-32 
sh command 4-25, 4-43 
shell 

commands 4-25 
escapesC!), CI) 4-30 

SHELL string 4-35, 4-48 
si command 4-26, 4-44 
so command 4-26, 4-44 
source command 4-26 
special characters. See Metacharacter, mail 
startup file 4-32 
string option 

setting 4-25 
summary 4-47 

subject 
asksubject option 4-33 
escape 4-28 
field 4-4, 4-6 

-subject escape 4-47 
switch 4-47 
system 

composition 4-39 
mailbox, holding messages 4-11 

tcommand 
message top printing 4-16, 4-20, 4-44 
toplines option 4-20 

-t escape 4-28,4-47 
tilde 

compose escapes 4-7 
quote escape C -) 4-32, 4-45 

-to escape 4-47 
to field 

mandatory 4-6 

1-20 

mail (continued) 
to field (continued) 

R command effect 4-16 
top command 4-16 
toplines 

option 4-48 
string 4-36 

u command 4-9, 4-14, 4-21,4-44 
-u option 4-37 
undeleting. See mail, u command 
unset command 

description and use 4-25, 4-44 
option control 4-47 

v command 4-8, 4-25, 4-44 
-v escape 4-27,4-47 
vertical bar (I ) escape 4-31 
vi, entering from compose mode 4-8 
-visual escape 4-47 
VISUAL string 4-35, 4-48 
wcommand 

message write out 4-22,4-44 
system mailbox, deleting a message 4-21 

-w escape 4-30,4-47 
-write escape 4-30,4-47 
write out. See mail, w command 
x command 

exit 4-21, 4-41 
session abort 4-14 

mail command 4-2, 5-1,5-5 
advantages of using 5-5 
disadvantages of using 5-5 
transferring files with 5-5 

MAIL variable 7-13 
Mailbox 

cleaning out 4-38 
command 4-22 
reading in 4-11 
system mailbox 4-5 
user mailbox 

filename 4-5 
message saving notation 4-20 

MAILCHECK variable 7-14 
MAILPATH variable 7-14 
Marking. See ed 
mb command. See mail 
mbox command. See mail 
mbox file. See Mailbox 
mchron option, mail 4-48 
mesg option. See vi 
~essage escape 4-46 
-message escape. See mail 
Metacharacter 

asterisk (*) 7-66 
brackets ([]) 7-66 



Metacharacter (continued) 
directory name, not used in 7-4 
escape 7-4 
list 7-66 
mail 4-8, 4-19 
question mark (?) 7-66 
redirection restriction 7-7 

metoo option. See mail 
Micnet network 5-1 
Minus sign (-) 

bc 
subtraction operator symbol 6-5 
unary operator symbol 6-5, 6-18 

mail, message advance 4-40 
redirection effect 7-47 
subtraction operator symbol 6-5 
variable conditional substitution 7-49 

Mistakes, correcting 2-24 
MKFILES shell procedure 7-61 
Multiple way branch 7-27 
MUltiplication. See bc 

N 

n command. See vi 
-n option 

echo command 7-46 
shell procedure 7-43 

Name grammar 7-65 
newgrp command 

described 7-39 
special shell command 7-39 

Newline substitution. See ed 
next command. See vi 2-51 
nohup command 7-24 
nosave option. See mail 
Notational conventions 1-2 
nu command. See vi 2-26 
Null command. See Colon (:), command 
NULL shell procedure 7-62 
Number sign (#), comment symbol 7-66 

o 

-0 operator 7-45 
Operator. See bc 
Option 

See also specific option 
DRAFT shell procedure 7-59 

Index 

Option (continued) 
invocation flags 7-50 
mail options. See mail 
tracing, $- variable 7-17 
vi options. See vi 

Or-if operator (II) 
command list 7-23 
described 7-24 
designated 7-66 

Output 
append symbol (> » 7-6, 7-66 
creation symbol (» 7-66 
diagnostic output file 7-6 
error redirection 7 -48 
grammar 7-64 
standard 

error file 7-6 
output file 7-6 

p 

pcommand 
ed use. See ed 
mail 

message printing 4-4, 4-8, 4-18, 4-43 
syntax 4-10 

page option. See mail 
Parentheses « » 

bc 
expression enclosure 6-17 
function identifier 6-16 

command grouping 7-31, 7-52, 7-66 
pipeline use, enclosing a command list 7-25 
test command operator 7-45 

PATH variable 
conditional substitution 7-50 
C-shell use. See C-shell 
described 7 -14 
directory search 

effect 7-54 
sequence change 7-3 

Pattern 
grammar 7 -65 
metacharacter 7-66 

Pattern matching facility 
case command 7-27 
expr command argument effect 7-46 
limitations 7-4 
metacharacter. See Metacharacter 
redirection restriction 7-6 
shell function 7-3 
variable assignment, 
not applicable 7-12 

1-21 



Index 

Percentage sign (%) 
bc modulo operator symbol 6-5 

Period (.) 
See also Dot (.) 
ed use. See ed 
pattern matching facility, restrictions 7-4 
vi use. See vi 

PHONE shell procedure 7-62 
PID 

$$ variable 7-16 
$! variable 7-17 

Pipe 
compose escape. See mail 
file interchange 7-58 
symbol (I) 7-66 

Pipeline 
command list 7-25 
C-shell use. See C-shell 
defined 7-23 
described 7-7 
DISTINCT! shell procedure 7-58 
filter 7-8 
grammar 7 -64 
notation 7-7 
procedure 7-7 

Plus sign (+) 
bc 

addition operator symbol 6-5 
unary operator symbol 6-18 

mail, message advance 4-14 4-40 
variable, conditional substi~tion 7-50 

Positional parameter 
assignment statement positioning 7-11 
described 7-11 
direct access 7-21 
null value assignment 7-49 
number yield, $# variable 7-16 
parameter substitution 7-12 
positioning 7-11 
prefix ($) 7-12 
setting 7-11 

Print 
command. See p command 
ed use. See ed 
mail. See mail 

-print escape. See mail 
Process 

defined 7-2 
number. See PID 

.profile file 
description and use 7-18 
PATH variable setting 7-15 
variable export 7-15 

ps command, C-shell use. See C-shell 

1-22 

PSI variable 7-15 
PS2 variable 7-15 

Q 

q command 
bc 6-2 
ed exit. See ed 
mail 

cancel 4-34 
exit 4-5, 4-11, 4-21, 4-43 

q!. See vi 
Question mark (?) 

directory name, not used in 7-4 
ed use. See ed 
mail 

command summary printing 4-40 
compose escape listing 4-15, 4-27 
compose escapes, listing 4-2 
help command 4-4, 4-17 

metacharacter 7-3,7-66 
pattern matching 

See Question mark, metacharacter 
variable conditional substitution 7-49 

quiet option. See mail 
quit command 

bc exit 6-2, 6-4 
q command 6-2 

-quit escape. See mail 
QUIT key, background process immunity 7-24 
Quotation mark 

back (') 
command substitution 7-4,7-10 
quoting 7-67 

double (") 
metacharacter escape 7-4 
quoting 7-67 
test command 7-44 
variable 7-12 

single (') 
C-shell use. See C-shell 
metacharacter escape 7-4 
trap command 7-35 
variable substitution, inhibiting 7-12 

Quoting 
See also Quotation mark 
backslash (\) use 7-67 
metacharacter escape 7-4 

( 
'~ 



R 

rcommand 
ed use. See ed 
mail use. See mail 

R command. See mail 
-r option, mail 4-37 
rcp command 5-1 

daemon.rnn 5-3 
how it works 5-3 
-m option 5-3 
sample command 5-2 
syntax of 5-2 
-u option 5-3 

read command 
See also vi 
See also ed 
exit status 7-39 
shell built-in command 7-52 
special shell command 7-39 

-read escape. See mail 
Read. See read command 
readonly command 

described 7-39 
shell built-in command 7-52 
special shell command 7-39 

Record string. See mail 
Redirection 

argument location 7-9 
case command 7-34 
cd arg command 7-38 
control command 7-34 
diagnostic output 7-7 
file descriptor 7-48 
for command 7-34 
if command 7-34 
minus sign (-) effect 7-47 
pattern matching,use restriction 7-6 
simple command line, appearance 7-23 
special character, use restriction 7-7 
symbols «), (» 7-66 
until command 7-34 
while command 7-34 

Regular expressions. See ed 
rehash command, C-shell use. See C-shell 
Reminder service, mail 4-38 
remote command 5-1, 5-3 

-f option 5-4 
-m option 5-4 
restricting remote execution 5-5 
sample command 5-4 
syntax of 5-3 

Repeat command,vi 2-48 

Index 

reply command 4-16 
Report option. See vi 
Reserved word, list 7 -67 
Retrieving files sent with uuto 

See uupick command 
Return code 7-16 
return command 

shell built-in command 7-52 
RETURN key, bc 6-2 

s 

scommand 
ed use. See ed 
mail 4-20, 4-21, 4-22, 4-43 

-s option 
mail, subject specification 4-36 
shell, invoking 7 -50 

scale command 6-8 
Scale. See bc 
Screen-oriented commands See vi 
Scripts 

See ed 
See Shell 

se command. See set command 
Search 

ed use. See ed 
vi procedure. See vi 

sed command. See ed 
Semicolon (;) 

be, statement separation 6-3, 6-22 
case command break 7-27 
case delimiter symbol 7-66 
command list 7-23 
command separator symbol 7-66 
C-shell use. See C-shell 
ed use. See ed 

Sending files over serial lines 
See rep 

Serial line 
commands for 5-1 
telecommunication, See cu command 

set all. See vi 
set command 

C-shell, variable value assignment 8-2 
mail 

description and use 4-25, 4-43 
option control 4-47 

name-value pair listing 7-20 
positional parameters, setting 7-11 
shell built-in command 7-52 
shell flag, setting 7-18 

1-23 



Index 

set command (continued) 
special shell command 7-38 

shcommand 
See also Shell 
described 7-1 
mail 4-25, 4-40, 4-43 
shell, invoking 7-20 

SHACCT variable 7-14 
Shell 

1-24 

argument passing 7-21 
command 

See also specific command 
executing while in vi 2-14 
search procedure 7-3 

compose escape. See mail 
conditional capability 7-25 
creating 7-2 
described 7-2 
-e option 7-43 
entering from mail mode 4-26 
escape 

ed procedure. See ed 
mail procedure. See mail 

execution 
flag. See Shell, option 
sequence 7-22 
terminating 7-31 

exit 
-e option 7-43 
mail mode return 4-26 
procedure 7 -31 
-t option 7-43 

function 7-1 
grammar 7 -64 
in-line input document handling 7-47 
interactive 7-50 
interruption procedure 7-35 
invoking 

option 7-50 
procedure 7-20 

-k option 7-43 
mail 

invoking 4-7 
shell commands 4-25 

-n option 7-43 
option 

See also specific option 
description and use 7-43 
setting 7-18 

pattern matching facility 
See Pattern matching facility 

positional parameter 
See Positional parameter 

procedure 

Shell (continued) 
procedure (continued) 

See also specific shell procedure 
advantages over C programs 7-42 
byte access, reducing 7-53 
creating 7-41 
described 7-2 
directory 7-42 
efficiency analysis 7-52 
examples 7-55 
filter, order consideration 7-53 
option 7-43 
scripts, examples of7-55 
time command 7-51 
writing strategies 7-51 

redirection ability 7-6 
scripts 7-55 
special command 

See also specific special command 
described 7-38 
listed 7-38 

special shell variable 7-21 
state 7-17 

Shell 
string. See SHELL, string 
-t option 7-43 
-u option 7-43 
-v option 7-18 
variable. See Variable 
-x option 7-18 

SHELL 
string 4-35, 4-48 
variable 7-14 

shift command 
argument processing 7-21 
shell built-in command 7-52 

si command. See mail 
Simple command. See Command 
Slash ({) 

bc, division operator symbol 6-5 
command, supress prepending 7-3 
ed use. See ed 
search command. See vi 

so command. See mail 
Special character 

See also Metacharacter 
ed use. See ed 
pattern matching facility 7-3 

Standard 
error file. See Output 
error output 7-48 
input file. See Input 
output file. See Output 

Star (*) 



Star (*) (continued) 
See also Asterisk (*) 
ed metacharacter. See ed 

String 
option. See mail 
searching for. See vi, searching 
variable 7-11 

-subject escape. See mail 
Subshell, directory change 7-17 
Substitution command. See s command 
Subtraction. See bc 
Switch. See Option 
System mailbox. See Mailbox 

T 

tcommand 
ed use. See ed 
mail 4-16, 4-20, 4-44 

-t option, shell procedure 7-43 
Table command. See ed 
Tabs, ed use. See ed 
tbl command. See ed 
Telecommunication 

interactive session 5-15, 5-17 
over serial lines 5-17 
remote terminal. See ct command 
See ct command 
See cu command 
See uucp 
See uux command 

Temporary file 
trap command 7-36 
use 7-16 

term option. See vi 
terse option. See vi 
test command 

argument 7-45 
brackets ([]) used in lieu of 7-44 
description and use 7-44 
operators 7-45 
options 7-44 
shell built-in command 7-52 

Text editor 
ed use. See ed 
vi use. See vi 

TEXTFILE shell procedure 7-63 
then clause 7-25 
Tilde escape. See mail, compose escape 
time command 7-51 
-to escape. See mail 
Topcommand.Seetcommand 

Toplines 
option. See mail 
string. See mail 

Index 

Transfer command. See ed,tcommand 
Transferring files 

local site. See rcp 
remote site. See uucp 
Micnet 

See mail 
See rcp 

phone lines 
See cu command 
See uucp 
See uuto command 

trap command 
description and use 7-35 
multiple traps 7-37 
shell's implementation method 7-37 
special shell command 7-38 
temporary file, removing 7-36 

troff. See ed 
true command 7-47 
type command 

description 7-40 
special shell command 7-40 

u 

ucommand 
ed use. See ed 
mail 4-9, 4-21, 4-44 
See vi 

-u option 
mail 4-37 
shell procedure 7-43 

ulimit command 
description 7-40 
special shell command 7-40 

umask command 
described 7-40 
shell built-in command 7-52 
special shell command 7-40 

Undo command 
See ed 
See vi 

unset command. See mail 
until command 

continue command effect 7-31 
description and use 7-28 
exit status 7-28 
redirection 7-34 
shell built-in command 7-52 

I-25 



Index 

User mailbox. See Mailbox 
/usr/bin directory 

/bin, files duplicated in 7-56 
command search 7-3 

uucp 
abbreviated pathnames 5-9 
advantages of 5-6 
C-shell considerations 5-9 
dial out site 5-6 
directory permissions 5-7 
disadvantages of 5-6 
file permissions 5-7 
how it works 5-8 
indirect transfers 5-7, 5-10 
listing remote UUCP systems 5-6 
-m option 5-10 
-n option 5-10 

uucp 
options 5-10 
patbnames 5-9 
sample command 5-8 5-9 
simplest form of 5-8 ' 
status of 5-10 
syntax of 5-7 
transferring files with 5-6 

UUCP 
commands 5-5 
networks 5-5 
programs 5-5 
uucp command 5-5 
uuto command 5-5 
uux command 5-5 
when to use 5-1 

uuname command 5-6 
listing remote UUCP systems 5-6 

uupick command 5-12 
-d option 5-13 
how it works 5-13 
-m option 5-13 
options 5-13 
quitting 5-13 
retrieving files with 5-12 
sample command 5-13 

uustat command 5-10 
uuto command 5-11 

advantages of 5-6 
disadvantages of 5-6 
how it works 5-12 
public directory 5-12 
retrieving files with uupick 5-12 
sample command 5-12 
syntax of 5-11 
/usr/spool/uucppublic 5-12 

uux command 5-13 

1-26 

uux command 5-13 (continued) 
local site 5-14 
quotation marks 5-14 
quoting the command line 5-14 
remote sites 5-14 
restricting commands 5-13 
sample command 5-14 
security considerations 5-13 
syntax of 5-14 
using 5-13 

v 

v command 
ed use. See ed 
mail 4-8, 4-25, 4-44 

-v option, printing an input line 7-18 
Value, $? variable 7-16 
Variable 

$? variable 7-16 
$! variable 7-17 
assignment 

line command 7-10 
string value 7-11 

bc variable. See bc 
command environment, composition 7-19 
conditional substitution 7-49 
described 7-10 
double quotation marks (" ") 7-12 
enclosure 7-12 
execution sequence 7-11 
expansion 7-5 
export 7-15 
expr command 7-46 
file, creating 7-34 
global check 7-43 
HOME. See HOME variable 
IFS. See IFS variable 
keyword parameter 7-19 
list 7-13 
listing procedure 7 -19 
MAn... See MAn.. variable 
MAn..CHECK. See MAn..CHECK variable 
MAn..PATH. See MAn..PATH variable 
name defined 7-11 
null value assignment procedure 7-49 
PATH. See PATH variable 
positional parameter 

See Positional parameter 
prefix ($) 7-12 
PS 1. See PS 1 variable 
PS2. See PS2 variable 

( 



Variable (continued) 
set variable defined 7-49 
SHACCT. See SHACCT variable 
shell, list of variables 7-13 
SHELL. See SHELL, variable 
special variable 7-16 
string value assignment 7-11 
substitution 

double quotation marks (" ") 7-12 
notation 7 -66 
redirection argument 7-6 
single quotation marks (' ') 7-12 
space interpretation 7-12 
-u option effect 7-43 

test command 7-44 
Vertical bar ( I ) 

mail escape 4-31 

vi 

or-if operator symbol (II ) 7-23 
pipeline notation 7-7 

. command 2-3 
o command, cursor movement 2-5 
appending text, a command 2-23 
args command 2-51 
b command, cursor movement 2-5 
Bourne shell, prompt 2-57 
breaking lines 2-29 
buffers 

delete 2-37 
naming 2-26 
selecting 2-26 

C command 2-34 
C shell, prompt 2-57 
canceling changes 2-49 
caret (~), pattern matching 2-44, 2-45 
cc command 2-34 
co (copy) command 2-26 
colon (:) 

line-oriented command, use 2-11 
status line prompt 2-11 

command 
See also specific command 
line-oriented 2-11 
repeating, using dot (.) 2-6 
screen-oriented 2-11 

/command, searching 2-9 
Command mode 

cursor movement 2-5 
entering 2-3 

control characters, inserting 2-29 
copying lines 2-26 
correcting mistakes 2-24 
crash, recovery from 2-55 
C-shell 

vi (continued) 
C-shell (continued) 

TERM variable 2-57 
terminal type, setting 2-57 

Ctrl-b, scrolling 2-6 
Ctrl-d 

scrolling 2-5 
subshell exit 2-55 

Ctrl-f, scrolling 2-6 
Ctrl-g 

Index 

file status information 2-11, 2-54 
Ctrl-j, inserting 2-29 
Ctrl-l, screen redraw 2-55 
Ctrl-q, inserting 2-29 
Ctrl-r, screen redraw 2-55 
Ctrl-s, inserting 2-29 
Ctrl-u 

deleting an insert 2-31 
scrolling 2-5 

Ctrl-v, use 2-29 
current line 

deleting 2-6,2-31 
designated 2-2 
line containing cursor 2-3 
number, finding out 2-26 

cursor movement 
+ key 2-20 
$ key 2-21 
B command 2-19 
backward 2-21 
BKSP 2-18 
character 2-18 
Ctrl-n 2-21 
Ctrl-p 2-21 
down 2-5,2-18 
e command 2-19 
end of file 2-5 
f command 2-19 
file, end of 2-5 
forward 2-20 
h command 2-18 
H command 2-21 
j 2-21 
j command 2-18 
k command 2-18, 2-21 
keys 2-5 
1 command 2-18 
L command 2-21 
left 2-5,2-18,2-19 
line 2-20 

beginning 2-5 
end 2-5 
number 2-5 

LINEFEED key 2-20 

1-27 



Index 

vi (continued) 
cursor movement (continued) 

lower left screen 2-5 
M command 2-21 
number of specific line 2-5 
pattern search 2-9 
RETURN key 2-20 
right 2-5, 2-18, 2-19 
screen 2-21 
scrolling 2-5,2-22 
SPACEBAR 2-18 
t command 2-19 
up 2-5,2-18 
upper left screen 2-5 
w command 2-19 
word 2-19 

backward 2-5 
forward 2-5 

cw command 2-34 
D command 2-6 
dO command 2-6 
date, finding out 2-14 
dd command 2-6, 2-30 
delete buffer, use 2-37 
deleting text 

by character 2-29 
by line 2-30 
by word 2-30 
D2-30 
dd command 2-6, 2-30 
deleting an insert 2-31 
dw command 2-30 
methods 2-6 
repeating a delete 2-48 
undoing a delete 2-4, 2-46 
X command 2-29 

demonstration 2-1 
described 2-1 
dollar sign ($) 

cursor movement 2-5 
pattern matching 2-44 
use in line address 2-31 

dot (.) 
command 2-6 
use in line address 2-31 

dw command 2-6 
editing several files 

changing the order 2-51 
end-of-line, displaying 2-59 
entering vi 

I-28 

filename specified 2-17 
line specified 2-18 
procedure 2-2 
several filenames 2-50 

vi (continued) 
entering vi (continued) 

word specified 2-18 
error messages 

brevity 2-60 
turning off2-53 

ESCAPE, Insert mode exit 2-3, 2-55 
exclamation point (!), shell escape 2-14 
exiting 

:q! 2-16 
saving changes to file 2-13, 2-48 
temporarily 2-14, 2-52 
without saving changes 2-49 
:x command 2-16, 2-48 
ZZ command 2-48 

.exrc file 2-61 
file 

creating 2-2 
exit without saving, :q! 2-16 
saving 2-16 
status information display 2-10 
status information procedure 2-11 

filename 
finding out 2-54 
planning 2-50 

G command, cursor movement 2-5 
global substitution, command syntax 2-41 
goto command 2-5 
H command, cursor movement 2-5 
i command, inserting text 2-2 
ignorecase option 2-40,2-58,2-59 
Insert command 2-2, 2-23 
Insert mode 

entering 2-3 
exiting 2-3 

inserting text 
beginning of line 2-23 
commands 2-23 
control characters 2-29 
from another file 2-14 
from other files 2-14,2-24,2-25 
I command 2-23 
Insert mode 2-3 
repeating an insert 2-24, 2-48 
undoing an insert 2-4, 2-46, 2-55 
See vi, appending text 

invoking 2-2, 2-17, 2-18,2-50 
J command 2-29 
j command, cursor movement 2-5 
joining lines 2-29 
k command, cursor movement 2-5 
I command, cursor movement 2-5 
leaving 

See vi, exiting 



vi (continued) 
leaving (continued) 

See vi, quitting 
line addressing 

dollar sign 2-31 
dot (.) 2-31 
procedure 2-31 

line numbers, displaying 
linenumber option 2-15, 2-59 
:nu command 2-26 
nu command 2-55 

line-oriented commands 
:args 2-51 
colon (:) use 2-11 
deleting text 2-30 
:e 2-25, 2-52 
entering 2-11 
:f2-54 
:file 2-54 
mode 2-53 
moving text 2-35 
:n 2-51 
nu 2-26, 2-55 
:q 2-49 
:r 2-24 
:rew 2-51 
:s 2-35 
status line, display 2-10 
:w 2-25 
:wq2-48 

list option 2-59 
.login file, setting terminal type 2-57 
magic option 2-45, 2-61 
mail, entering vi from compose mode 4-8 
marking lines 2-25 
mesg option 2-61 
mistakes, correcting 2-24 
mode 

Command mode 2-55 
determining 2-55 
Insert mode 2-55 

moving text 2-35 
n command 2-10, 2-40 
new line, opening 2-24 
next command 2-51 
number option 2-59 
opening a new line 2-24 
options 

displaying 2-58 
ignorecase 2-40 
ignorecase option 2-58 
linenumber option 2-26 
list 2-16 
list option 2-59 

Index 

vi (continued) 
options (continued) 

magic option 2-45, 2-61 
mesg option 2-61 
number option 2-35, 2-59 
report option 2-59 
setting 2-56, 2-58 
term option 2-60 
terse option 2-60 
warn option 2-53, 2-60 
wrapscan option 2-41, 2-61 

overstrike commands 2-32 
pattern matching 

beginning of line 2-44 
caret (~) 2-45 
character range 2-45 
end of line 2-44 
exceptions 2-45 
special characters 2-45 
square brackets ([]) 2-45 

period (.) 
See also vi, dot (.) 
pattern matching 2-44 

problem solving 2-55 
.profile file, terminal type 2-57 
putting 2-26 
:q! 2-16 
Q command 2-53 
quitting 2-14, 2-16, 2-48, 2-49, 2-52, 2-55 

See also vi, exiting 
rcommand 2-14, 2-32 
read command 2-14 
redrawing the screen 2-55 
Repeat command 2-48 
repeating a command 2-48 
replacing 

line 2-34 
word 2-34, 2-35 

report option 2-59 
rew command 2-51 
S command 2-33 
saving a file 2-49 
screen, redrawing 2-55 
screen-oriented commands 2-11 
scrolling 

backward 2-5, 2-6 
down 2-5, 2-22 
forward 2-6 
up 2-5, 2-22 

search and replace 
c option 2-43 
choosing replacement 2-43 
command syntax 2-41 
global 2-41 

1-29 



Index 

vi (continued) 

1-30 

search and replace (continued) 
warning 2-47 

p option 2-43 
printing replacement 2-43 
word 2-42 

searching 
See also vi, search and replace 
backward 2-40 
caret H use 2-44, 2-45 
case significance 2-40, 2-59 
dollar sign ($) 2-44 
forward 2-10, 2-39 
next command 2-40 
period (.) 2-44 
procedure 2-9 
repetition 2-10 
slash (/) 2-9 
special characters 2-40,2-61 
square brackets ([]) 2-45 
status line, display 2-10 
wrap 2-10, 2-41, 2-61 

session, canceling 2-16 
set all, option list 2-16 
set command 2-16, 2-57, 2-58 
setting options 2-16,2-57,2-58 
shell 

command, executing 2-14 
escape 2-52 

slash (/) 
search command delimiter 2-9 

special characters 
matching 2-45 
searching for 2-40,2-61 
vi filenames 2-50 

status line 
line-oriented command entry 2-11 
location 2-10 
prompt, colon (:) use 2-11 

string 
pattern matching 2-45 
searching for 2-10 

subshell, exiting 2-55 
substitute commands 2-33 
switching files 2-52 
system crash, file recovery 2-56 
tabs, displaying 2-59 
TERM variable 2-57 

Bourne shell 2-57 
Visual Shell 2-57 

termcap 2-57 
terminal type, setting 

Bourne shell 2-57 
C-shell 2-57 

vi (continued) 
terminal type, setting (continued) 

instructions 2-60 
Visual Shell 2-57 

terse option 2-60 
time, finding out 2-14 
u command 2-4, 2-46, 2-55 
Undo command 2-4 
w command, cursor movement 2-5 
warn option 2-53, 2-60 
warnings, turning off2-60 
word, deleting 2-6 
wrapscan option 2-41, 2-61 
write messages 2-61 
writing out a file 

:wq command 2-48, 2-49 
x command 2-6 
:x command 2-16, 2-48 
yanking lines 2-25,2-28 
ZZ command 2-48 

vi, used in mail 
compose escape, -v 4-47 
editing 4-25 
entry from command mode 4-8 
VISUAL string 4-48 

visual command. See mail 
-visual escape. See mail 
Visual Shell 

See also vsh 
described 9-1 
TERM variable 2-57 
terminal type 2-57 

VISUAL string. See mail 
vsh 

?, help key 9-2 
cancel key 9-4 
command option menu 9-3 
command output 9-10 

shell output 9-10 
vshell output 9-10 

command piping 9-12 
copy file or directory option 9-7 
count option 9-12 
create file system 9-9 
Ctrl-C, cancel key 9-4 
cursor motion keys 9-4 
delete file or directory option 9-8 
described 9-1 
edit a file 9-8 
editing options keys 9-4 
entering the shell 9-2 
exit 9-11 
file systems 9-10 
get option 9-13 



vsh (continued) 
grep 9-13 
head option 9-12,9-13 
help key 9-2 
help menu 9-8 
invoking 

commands 9-7 
shell 9-2 

keystrokes 9-2 
leaving 9-2, 9-11 
list files 9-11 
mail option 9-8 
Main menu 9-3 
menu selection 9-3 
message line 9-3 
more option 9-13 
move cursor 9-4 
name option 9-9 
options menu 9-9 

file systems 9-9 
list files 9-9 
make directory 9-9 

pattern recognition 9-13 
permissions option 9-10 
pipe options 9-12 
print 

a file 9-11 
option 9-11 

quit 9-11 
key 9-2 

rename file option 9-9 
run 

option 9-11 
shell command 9-11 

scroll through file 9-13 
send file to printer 9-11 
set file permissions 9-10 
shell command 9-11 
sort option 9-12, 9-14 
status line 9-3 
tail option 9-12, 9-14 
TERM variable 2-57 
terminal type 2-57 
view window 

motion keys 9-5 
moving cursor 9-5 

view file 9-11 
view option 9-11 
window 

adjustment 9-12 
option 9-12 

window motion keys 9-5 
word, line, character counts 9-12 

w 

wcommand 
ed use. See ed 
mail 

message 
saving 4-22 
write out 4-44 

Index 

system mailbox, deleting a message 4-21 
vi use. See vi 

wait command 
described 7-41 
shell built-in command 7-52 
special shell command 7-41 

warn option. See vi 
while command 

break command effect 7-30 
continue command effect 7-30 
description and use 7-28 
exit status 7-28 
loop 7-57 
redirection 7-34 
shell built-in command 7-52 
test command 7-44 

Word, grammar 7-65 
wrapscan option. See vi 
-write escape. See mail 
Write out. See w command 
WRITEMAIL shell procedure 7-63 

x 

x command 
mail 

exit 4-21, 4-41 
session abort 4-14 

vi use. See vi 
-x option, printing a command 7-18 
XENIX command 

directory residence, C-shell 8-3 

z 

z command, vi scroll 2-22 
ZZ command 2-48 

1-31 











512-210-026 
24837 

( 
\, 
~ 


