cgelq2.f(3) LAPACK cgelq2.f(3)[top]NAMEcgelq2.f-SYNOPSISFunctions/Subroutines subroutine cgelq2 (M, N, A, LDA, TAU, WORK, INFO)CGELQ2computes the LQ factorization of a general rectangular matrix using an unblocked algorithm.Function/Subroutine Documentation subroutine cgelq2 (integerM, integerN, complex, dimension( lda, * )A, integerLDA, complex, dimension( * )TAU, complex, dimension( * )WORK, integerINFO)CGELQ2computes the LQ factorization of a general rectangular matrix using an unblocked algorithm. Purpose:CGELQ2computes an LQ factorization of a complex m by n matrix A: A = L * Q. Parameters: M M is INTEGER The number of rows of the matrix A. M >= 0. N N is INTEGER The number of columns of the matrix A. N >= 0. A A is COMPLEX array, dimension (LDA,N) On entry, the m by n matrix A. On exit, the elements on and below the diagonal of the array contain the m by min(m,n) lower trapezoidal matrix L (L is lower triangular if m <= n); the elements above the diagonal, with the array TAU, represent the unitary matrix Q as a product of elementary reflectors (see Further Details). LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M). TAU TAU is COMPLEX array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details). WORK WORK is COMPLEX array, dimension (M) INFO INFO is INTEGER = 0: successful exit < 0: if INFO =, the i-th argument had an illegal value Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: September 2012 Further Details: The matrix Q is represented as a product of elementary reflectors Q = H(k)**H . . . H(2)**H H(1)**H, where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v**H where tau is a complex scalar, and v is a complex vector with v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in A(i,i+1:n), and tau in TAU(i). Definition at line 122 of file cgelq2.f.-iAuthorGenerated automatically by Doxygen for LAPACK from the source code.Version 3.4.2Tue Sep 25 2012 cgelq2.f(3)

List of man pages available for

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]

Polar

Member of Polar

Based on Fawad Halim's script.

....................................................................

Vote for polarhome |