cgerqf.f(3) LAPACK cgerqf.f(3)[top]NAMEcgerqf.f-SYNOPSISFunctions/Subroutines subroutine cgerqf (M, N, A, LDA, TAU, WORK, LWORK, INFO)CGERQFFunction/Subroutine Documentation subroutine cgerqf (integerM, integerN, complex, dimension( lda, * )A, integerLDA, complex, dimension( * )TAU, complex, dimension( * )WORK, integerLWORK, integerINFO)CGERQFPurpose:CGERQFcomputes an RQ factorization of a complex M-by-N matrix A: A = R * Q. Parameters: M M is INTEGER The number of rows of the matrix A. M >= 0. N N is INTEGER The number of columns of the matrix A. N >= 0. A A is COMPLEX array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, if m <= n, the upper triangle of the subarray A(1:m,n-m+1:n) contains the M-by-M upper triangular matrix R; if m >= n, the elements on and above the (m-n)-th subdiagonal contain the M-by-N upper trapezoidal matrix R; the remaining elements, with the array TAU, represent the unitary matrix Q as a product of min(m,n) elementary reflectors (see Further Details). LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M). TAU TAU is COMPLEX array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details). WORK WORK is COMPLEX array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK LWORK is INTEGER The dimension of the array WORK. LWORK >= max(1,M). For optimum performance LWORK >= M*NB, where NB is the optimal blocksize. If LWORK =, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO INFO is INTEGER = 0: successful exit < 0: if INFO =-1, the i-th argument had an illegal value Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Further Details: The matrix Q is represented as a product of elementary reflectors Q = H(1)**H H(2)**H . . . H(k)**H, where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v**H where tau is a complex scalar, and v is a complex vector with v(n-k+i+1:n) = 0 and v(n-k+i) = 1; conjg(v(1:n-k+i-1)) is stored on exit in A(m-k+i,1:n-k+i-1), and tau in TAU(i). Definition at line 139 of file cgerqf.f.-iAuthorGenerated automatically by Doxygen for LAPACK from the source code.Version 3.4.2Tue Sep 25 2012 cgerqf.f(3)

List of man pages available for

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]

Polar

Member of Polar

Based on Fawad Halim's script.

....................................................................

Vote for polarhome |