CPTEQR man page on Oracle

Man page or keyword search:  
man Server   33470 pages
apropos Keyword Search (all sections)
Output format
Oracle logo
[printable version]

cpteqr.f(3)			    LAPACK			   cpteqr.f(3)

       cpteqr.f -

       subroutine cpteqr (COMPZ, N, D, E, Z, LDZ, WORK, INFO)

Function/Subroutine Documentation
   subroutine cpteqr (characterCOMPZ, integerN, real, dimension( * )D, real,
       dimension( * )E, complex, dimension( ldz, * )Z, integerLDZ, real,
       dimension( * )WORK, integerINFO)


	    CPTEQR computes all eigenvalues and, optionally, eigenvectors of a
	    symmetric positive definite tridiagonal matrix by first factoring the
	    matrix using SPTTRF and then calling CBDSQR to compute the singular
	    values of the bidiagonal factor.

	    This routine computes the eigenvalues of the positive definite
	    tridiagonal matrix to high relative accuracy.  This means that if the
	    eigenvalues range over many orders of magnitude in size, then the
	    small eigenvalues and corresponding eigenvectors will be computed
	    more accurately than, for example, with the standard QR method.

	    The eigenvectors of a full or band positive definite Hermitian matrix
	    can also be found if CHETRD, CHPTRD, or CHBTRD has been used to
	    reduce this matrix to tridiagonal form.  (The reduction to
	    tridiagonal form, however, may preclude the possibility of obtaining
	    high relative accuracy in the small eigenvalues of the original
	    matrix, if these eigenvalues range over many orders of magnitude.)


		     = 'N':  Compute eigenvalues only.
		     = 'V':  Compute eigenvectors of original Hermitian
			     matrix also.  Array Z contains the unitary matrix
			     used to reduce the original matrix to tridiagonal
		     = 'I':  Compute eigenvectors of tridiagonal matrix also.


		     N is INTEGER
		     The order of the matrix.  N >= 0.


		     D is REAL array, dimension (N)
		     On entry, the n diagonal elements of the tridiagonal matrix.
		     On normal exit, D contains the eigenvalues, in descending


		     E is REAL array, dimension (N-1)
		     On entry, the (n-1) subdiagonal elements of the tridiagonal
		     On exit, E has been destroyed.


		     Z is COMPLEX array, dimension (LDZ, N)
		     On entry, if COMPZ = 'V', the unitary matrix used in the
		     reduction to tridiagonal form.
		     On exit, if COMPZ = 'V', the orthonormal eigenvectors of the
		     original Hermitian matrix;
		     if COMPZ = 'I', the orthonormal eigenvectors of the
		     tridiagonal matrix.
		     If INFO > 0 on exit, Z contains the eigenvectors associated
		     with only the stored eigenvalues.
		     If	 COMPZ = 'N', then Z is not referenced.


		     LDZ is INTEGER
		     The leading dimension of the array Z.  LDZ >= 1, and if
		     COMPZ = 'V' or 'I', LDZ >= max(1,N).


		     WORK is REAL array, dimension (4*N)


		     INFO is INTEGER
		     = 0:  successful exit.
		     < 0:  if INFO = -i, the i-th argument had an illegal value.
		     > 0:  if INFO = i, and i is:
			   <= N	 the Cholesky factorization of the matrix could
				 not be performed because the i-th principal minor
				 was not positive definite.
			   > N	 the SVD algorithm failed to converge;
				 if INFO = N+i, i off-diagonal elements of the
				 bidiagonal factor did not converge to zero.

	   Univ. of Tennessee

	   Univ. of California Berkeley

	   Univ. of Colorado Denver

	   NAG Ltd.

	   September 2012

       Definition at line 146 of file cpteqr.f.

       Generated automatically by Doxygen for LAPACK from the source code.

Version 3.4.2			Tue Sep 25 2012			   cpteqr.f(3)

List of man pages available for Oracle

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]
Polarhome, production since 1999.
Member of Polarhome portal.
Based on Fawad Halim's script.
Vote for polarhome
Free Shell Accounts :: the biggest list on the net