cgebd2.f(3) LAPACK cgebd2.f(3)[top]NAMEcgebd2.f-SYNOPSISFunctions/Subroutines subroutine cgebd2 (M, N, A, LDA, D, E, TAUQ, TAUP, WORK, INFO) CGEBD2 reduces a general matrix to bidiagonal form using an unblocked algorithm.Function/Subroutine Documentation subroutine cgebd2 (integerM, integerN, complex, dimension( lda, * )A, integerLDA, real, dimension( * )D, real, dimension( * )E, complex, dimension( * )TAUQ, complex, dimension( * )TAUP, complex, dimension( * )WORK, integerINFO) CGEBD2 reduces a general matrix to bidiagonal form using an unblocked algorithm. Purpose: CGEBD2 reduces a complex general m by n matrix A to upper or lower real bidiagonal form B by a unitary transformation: Q**H * A * P = B. If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal. Parameters: M M is INTEGER The number of rows in the matrix A. M >= 0. N N is INTEGER The number of columns in the matrix A. N >= 0. A A is COMPLEX array, dimension (LDA,N) On entry, the m by n general matrix to be reduced. On exit, if m >= n, the diagonal and the first superdiagonal are overwritten with the upper bidiagonal matrix B; the elements below the diagonal, with the array TAUQ, represent the unitary matrix Q as a product of elementary reflectors, and the elements above the first superdiagonal, with the array TAUP, represent the unitary matrix P as a product of elementary reflectors; if m < n, the diagonal and the first subdiagonal are overwritten with the lower bidiagonal matrix B; the elements below the first subdiagonal, with the array TAUQ, represent the unitary matrix Q as a product of elementary reflectors, and the elements above the diagonal, with the array TAUP, represent the unitary matrix P as a product of elementary reflectors. See Further Details. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M). D D is REAL array, dimension (min(M,N)) The diagonal elements of the bidiagonal matrix B: D(i) = A(i,i). E E is REAL array, dimension (min(M,N)-1) The off-diagonal elements of the bidiagonal matrix B: if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1; if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1. TAUQ TAUQ is COMPLEX array dimension (min(M,N)) The scalar factors of the elementary reflectors which represent the unitary matrix Q. See Further Details. TAUP TAUP is COMPLEX array, dimension (min(M,N)) The scalar factors of the elementary reflectors which represent the unitary matrix P. See Further Details. WORK WORK is COMPLEX array, dimension (max(M,N)) INFO INFO is INTEGER = 0: successful exit < 0: if INFO =, the i-th argument had an illegal value. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: September 2012 Further Details: The matrices Q and P are represented as products of elementary reflectors: If m >= n, Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1) Each H(i) and G(i) has the form: H(i) = I - tauq * v * v**H and G(i) = I - taup * u * u**H where tauq and taup are complex scalars, and v and u are complex vectors; v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n); tauq is stored in TAUQ(i) and taup in TAUP(i). If m < n, Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m) Each H(i) and G(i) has the form: H(i) = I - tauq * v * v**H and G(i) = I - taup * u * u**H where tauq and taup are complex scalars, v and u are complex vectors; v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). The contents of A on exit are illustrated by the following examples: m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n): ( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 ) ( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 ) ( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 ) ( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 ) ( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 ) ( v1 v2 v3 v4 v5 ) where d and e denote diagonal and off-diagonal elements of B, vi denotes an element of the vector defining H(i), and ui an element of the vector defining G(i). Definition at line 191 of file cgebd2.f.-iAuthorGenerated automatically by Doxygen for LAPACK from the source code.Version 3.4.2Tue Sep 25 2012 cgebd2.f(3)

List of man pages available for

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]

Polar

Member of Polar

Based on Fawad Halim's script.

....................................................................

Vote for polarhome |