cpbtf2.f(3) LAPACK cpbtf2.f(3)[top]NAMEcpbtf2.f-SYNOPSISFunctions/Subroutines subroutine cpbtf2 (UPLO, N, KD, AB, LDAB, INFO) CPBTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite band matrix (unblocked algorithm).Function/Subroutine Documentation subroutine cpbtf2 (characterUPLO, integerN, integerKD, complex, dimension( ldab, * )AB, integerLDAB, integerINFO) CPBTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite band matrix (unblocked algorithm). Purpose: CPBTF2 computes the Cholesky factorization of a complex Hermitian positive definite band matrix A. The factorization has the form A = U**H * U , if UPLO = 'U', or A = L * L**H, if UPLO = 'L', where U is an upper triangular matrix, U**H is the conjugate transpose of U, and L is lower triangular. This is the unblocked version of the algorithm, calling Level 2 BLAS. Parameters: UPLO UPLO is CHARACTER*1 Specifies whether the upper or lower triangular part of the Hermitian matrix A is stored: = 'U': Upper triangular = 'L': Lower triangular N N is INTEGER The order of the matrix A. N >= 0. KD KD is INTEGER The number of super-diagonals of the matrix A if UPLO = 'U', or the number of sub-diagonals if UPLO = 'L'. KD >= 0. AB AB is COMPLEX array, dimension (LDAB,N) On entry, the upper or lower triangle of the Hermitian band matrix A, stored in the first KD+1 rows of the array. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). On exit, if INFO = 0, the triangular factor U or L from the Cholesky factorization A = U**H *U or A = L*L**H of the band matrix A, in the same storage format as A. LDAB LDAB is INTEGER The leading dimension of the array AB. LDAB >= KD+1. INFO INFO is INTEGER = 0: successful exit < 0: if INFO =, the k-th argument had an illegal value > 0: if INFO = k, the leading minor of order k is not positive definite, and the factorization could not be completed. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: September 2012 Further Details: The band storage scheme is illustrated by the following example, when N = 6, KD = 2, and UPLO = 'U': On entry: On exit: * * a13 a24 a35 a46 * * u13 u24 u35 u46 * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56 a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66 Similarly, if UPLO = 'L' the format of A is as follows: On entry: On exit: a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55 l66 a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65 * a31 a42 a53 a64 * * l31 l42 l53 l64 * * Array elements marked * are not used by the routine. Definition at line 143 of file cpbtf2.f.-kAuthorGenerated automatically by Doxygen for LAPACK from the source code.Version 3.4.2Tue Sep 25 2012 cpbtf2.f(3)

List of man pages available for

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]

Polar

Member of Polar

Based on Fawad Halim's script.

....................................................................

Vote for polarhome |